HDFS架构

HDFS(Hadoop Distributed File System)是Apache Hadoop项目的核心组件之一,它是一个分布式文件系统,专为运行在通用硬件上的大型数据集提供高吞吐量的数据访问。HDFS的设计目标是支持大规模数据的存储和处理,尤其是在大数据处理场景中。HDFS的架构主要包含以下几个关键组件:

  1. NameNode:这是HDFS的主节点,负责管理文件系统的命名空间(Namespace),记录文件如何被分割成数据块以及这些数据块存储在哪些DataNode上。NameNode不存储实际数据,而是维护着所有文件和数据块的元数据信息,包括文件的名称、文件的目录结构、文件对应的块信息及块所在的DataNode等。

  2. DataNode:存储实际数据的工作节点。在HDFS集群中,通常会部署多个DataNode,每个DataNode负责存储一部分数据块(Block)。DataNode会定期向NameNode发送心跳信号和块报告,以保持其在集群中的活性状态,并告知NameNode其存储的数据块信息。

  3. Secondary NameNode:这是一个常引起误解的组件,实际上它并不是NameNode的热备或者故障切换节点。Secondary NameNode主要是帮助NameNode合并编辑日志(EditLog)和元数据文件(FsImage),减少NameNode启动时的负担,并协助恢复元数据。在Hadoop 2.x及以后版本中,引入了Checkpoints服务的概念,这一角色变得更加灵活,并可通过配置多个节点来提高高可用性。

  4. HDFS Federation:从Hadoop 2.x开始引入,HDFS联邦允许一个NameNode管理多个独立的命名空间,每个命名空间有自己的一套文件系统根目录和块池。这样可以解决单个NameNode成为扩展瓶颈的问题,使得HDFS能够水平扩展以支持更多用户和应用程序。

  5. HDFS High Availability (HA):为了解决单点故障问题,Hadoop引入了高可用性配置,其中至少有两个NameNode运行在活动/备用模式下。借助ZooKeeper Failover Controller(ZKFC)和JournalNode组件,当主NameNode失败时,备用NameNode可以迅速接管,从而保证HDFS服务的连续性。

总结来说,HDFS架构通过NameNode进行元数据管理,利用大量的DataNode进行数据存储,通过引入Secondary NameNode和HA机制增强系统的可靠性和扩展性,满足了大数据环境下对大规模数据存储和访问的需求。

相关推荐
程序员ys36 分钟前
微前端是什么?
微服务·架构·前端框架
Goboy1 小时前
从零开始,用JupyterLab和TensorFlow打造你的第一个猫狗识别模型
后端·程序员·架构
聚搜云—服务器分享1 小时前
阿里云国际站代理商:传统IOE架构向云原生迁移的关键挑战有哪些?
阿里云·云原生·架构
鲨鲨1081 小时前
隐匿视角:七款局域网屏幕监控软件对企业数字神经系统架构的重塑效应探究
架构
威视锐科技8 小时前
软件定义无线电36
网络·网络协议·算法·fpga开发·架构·信息与通信
JINX的诅咒8 小时前
CORDIC算法:三角函数的硬件加速革命——从数学原理到FPGA实现的超高效计算方案
算法·数学建模·fpga开发·架构·信号处理·硬件加速器
宅小海13 小时前
14 配置Hadoop集群-配置历史和日志服务
linux·服务器·hadoop
珹洺15 小时前
Java-servlet(十)使用过滤器,请求调度程序和Servlet线程(附带图谱表格更好对比理解)
java·开发语言·前端·hive·hadoop·servlet·html
二进制coder15 小时前
DFX架构详解:构建面向全生命周期的卓越设计体系
架构
Mia@16 小时前
网络通信&微服务
微服务·云原生·架构