生成视频 zeroscope_v2_576w 学习笔记

目录

生成视频代码:

维度报错:

解决方法,修改代码:


已开源:

视频生成模型 Zeroscope开源 免费无水印

视频生成模型 Zeroscope_v2_576w 开源 - 腾讯云开发者社区-腾讯云

生成视频代码:

python 复制代码
import torch
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
from diffusers.utils import export_to_video
import os
# os.environ['HTTP_PROXY'] = 'http://127.0.0.1:7890'

os.environ["HF_TOKEN"] = "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"
# os.environ['HTTPS_PROXY'] = 'https://127.0.0.1:7890'

# pipe = DiffusionPipeline.from_pretrained(r"D:\360安全浏览器下载", torch_dtype=torch.float16)
pipe = DiffusionPipeline.from_pretrained("cerspense/zeroscope_v2_576w", torch_dtype=torch.float16,use_auth_token=os.environ["HF_TOKEN"])
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
pipe.enable_model_cpu_offload()

prompt = "Darth Vader is surfing on waves"
video_frames = pipe(prompt, num_inference_steps=40, height=320, width=576, num_frames=24).frames
video_path = export_to_video(video_frames)
print(video_path)

维度报错:

bash 复制代码
Traceback (most recent call last):
  File "E:\project\jijia\aaa.py", line 18, in <module>
    video_path = export_to_video(video_frames)
  File "D:\ProgramData\miniconda3\envs\pysd\lib\site-packages\diffusers\utils\export_utils.py", line 135, in export_to_video
    h, w, c = video_frames[0].shape
ValueError: too many values to unpack (expected 3)

解决方法,修改代码:

python 复制代码
def export_to_video(
        video_frames: Union[List[np.ndarray], List[PIL.Image.Image]], output_video_path: str = None, fps: int = 10
) -> str:
    if is_opencv_available():
        import cv2
    else:
        raise ImportError(BACKENDS_MAPPING["opencv"][1].format("export_to_video"))

    if output_video_path is None:
        output_video_path = tempfile.NamedTemporaryFile(suffix=".mp4").name

    # Convert PIL images to numpy arrays if needed
    if isinstance(video_frames[0], PIL.Image.Image):
        video_frames = [np.array(frame) for frame in video_frames]

    # Ensure the frames are in the correct format
    if isinstance(video_frames[0], np.ndarray):
        # Check if frames are 4-dimensional and handle accordingly
        if len(video_frames[0].shape) == 4:
            video_frames = [frame[0] for frame in video_frames]

        # Convert frames to uint8
        video_frames = [(frame * 255).astype(np.uint8) for frame in video_frames]

    # Ensure all frames are in (height, width, channels) format
    h, w, c = video_frames[0].shape
    fourcc = cv2.VideoWriter_fourcc(*"mp4v")
    video_writer = cv2.VideoWriter(output_video_path, fourcc, fps=fps, frameSize=(w, h))

    for frame in video_frames:
        img = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
        video_writer.write(img)

    video_writer.release()
    return output_video_path

def export_to_video_o(
    video_frames: Union[List[np.ndarray], List[PIL.Image.Image]], output_video_path: str = None, fps: int = 10
) -> str:
    if is_opencv_available():
        import cv2
    else:
        raise ImportError(BACKENDS_MAPPING["opencv"][1].format("export_to_video"))
    if output_video_path is None:
        output_video_path = tempfile.NamedTemporaryFile(suffix=".mp4").name

    if isinstance(video_frames[0], np.ndarray):
        video_frames = [(frame * 255).astype(np.uint8) for frame in video_frames]

    elif isinstance(video_frames[0], PIL.Image.Image):
        video_frames = [np.array(frame) for frame in video_frames]

    fourcc = cv2.VideoWriter_fourcc(*"mp4v")
    h, w, c = video_frames[0].shape
    video_writer = cv2.VideoWriter(output_video_path, fourcc, fps=fps, frameSize=(w, h))
    for i in range(len(video_frames)):
        img = cv2.cvtColor(video_frames[i], cv2.COLOR_RGB2BGR)
        video_writer.write(img)
    return output_video_path
相关推荐
晓13131 分钟前
前端篇——番外篇 Bootstrap框架
前端·javascript·css·html
黑心的奥利奥2 分钟前
前端项目利用Gitlab CI/CD流水线自动化打包、部署云服务
前端·ci/cd·gitlab
墨菲安全7 分钟前
NPM组件 @ivy-shared-components/iconslibrary 等窃取主机敏感信息
前端·npm·node.js·npm组件投毒·主机敏感信息窃取·恶意npm包
超浪的晨39 分钟前
Java List 集合详解:从基础到实战,掌握 Java 列表操作全貌
java·开发语言·后端·学习·个人开发
盛夏绽放42 分钟前
Excel导出实战:从入门到精通 - 构建专业级数据报表的完整指南
开发语言·javascript·excel·有问必答
Mintopia44 分钟前
🌀曲面细分求交:在无限细节中捕捉交点的浪漫
前端·javascript·计算机图形学
超浪的晨1 小时前
Java Set 集合详解:从基础语法到实战应用,彻底掌握去重与唯一性集合
java·开发语言·后端·学习·个人开发
Mintopia1 小时前
🧙‍♂️用 Three.js 判断一个点是否在圆内 —— 一次圆心和点的对话
前端·javascript·three.js
workflower1 小时前
活动图描述场景
开发语言·软件工程·需求分析·软件需求·敏捷流程
梦想的初衷~1 小时前
基于现代R语言【Tidyverse、Tidymodel】的机器学习方法
开发语言·机器学习·r语言