【昇思初学入门】第三天打卡

数据集Dataset

心得体会

  1. 昇思提供了丰富的数据集,文本、图像、音频等都有内置
  2. MindSpore的Pipeline设计和并行处理能力使得数据预处理更加高效
  3. 可通过GeneratorDataset接口实现自定义方式的数据集加载
  4. 可迭代的数据集,可以通过迭代的方式逐步获取数据样本,生成器generator也属于可迭代的数据集类型

笔记

  1. 数据获取
python 复制代码
import numpy as np
from mindspore.dataset import vision
from mindspore.dataset import MnistDataset, GeneratorDataset
import matplotlib.pyplot as plt
# Download data from open datasets
from download import download

url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/" \
      "notebook/datasets/MNIST_Data.zip"
path = download(url, "./", kind="zip", replace=True)

这里找数据集:https://www.mindspore.cn/docs/zh-CN/r2.3.0rc2/api_python/mindspore.dataset.html

2.数据迭代

python 复制代码
# shuffle 消除数据排列造成的分布不均问题,及打乱数据顺序
train_dataset = MnistDataset("MNIST_Data/train", shuffle=True)
def visualize(dataset):
    figure = plt.figure(figsize=(4, 4))
    cols, rows = 3, 3

    plt.subplots_adjust(wspace=0.5, hspace=0.5)

    for idx, (image, label) in enumerate(dataset.create_tuple_iterator()):
        figure.add_subplot(rows, cols, idx + 1)
        plt.title(int(label))
        plt.axis("off")
        plt.imshow(image.asnumpy().squeeze(), cmap="gray")
        if idx == cols * rows - 1:
            break
    plt.show()
  1. 数据预处理
python 复制代码
#图像统一除以255,数据类型由uint8转为了float32
train_dataset = train_dataset.map(vision.Rescale(1.0 / 255.0, 0), input_columns='image')
相关推荐
九章云极AladdinEdu6 小时前
超参数自动化调优指南:Optuna vs. Ray Tune 对比评测
运维·人工智能·深度学习·ai·自动化·gpu算力
研梦非凡9 小时前
ICCV 2025|从粗到细:用于高效3D高斯溅射的可学习离散小波变换
人工智能·深度学习·学习·3d
通街市密人有11 小时前
IDF: Iterative Dynamic Filtering Networks for Generalizable Image Denoising
人工智能·深度学习·计算机视觉
智数研析社11 小时前
9120 部 TMDb 高分电影数据集 | 7 列全维度指标 (评分 / 热度 / 剧情)+API 权威源 | 电影趋势分析 / 推荐系统 / NLP 建模用
大数据·人工智能·python·深度学习·数据分析·数据集·数据清洗
心动啊12113 小时前
深度神经网络1——梯度问题+标签数不够问题
人工智能·神经网络·dnn
七元权13 小时前
论文阅读-Correlate and Excite
论文阅读·深度学习·注意力机制·双目深度估计
ViperL113 小时前
[智能算法]可微的神经网络搜索算法-FBNet
人工智能·深度学习·神经网络
2202_7567496914 小时前
LLM大模型-大模型微调(常见微调方法、LoRA原理与实战、LLaMA-Factory工具部署与训练、模型量化QLoRA)
人工智能·深度学习·llama
人有一心14 小时前
深度学习中显性特征组合的网络结构crossNet
人工智能·深度学习
猫天意15 小时前
【目标检测】metrice_curve和loss_curve对比图可视化
人工智能·深度学习·目标检测·计算机视觉·cv