【昇思初学入门】第三天打卡

数据集Dataset

心得体会

  1. 昇思提供了丰富的数据集,文本、图像、音频等都有内置
  2. MindSpore的Pipeline设计和并行处理能力使得数据预处理更加高效
  3. 可通过GeneratorDataset接口实现自定义方式的数据集加载
  4. 可迭代的数据集,可以通过迭代的方式逐步获取数据样本,生成器generator也属于可迭代的数据集类型

笔记

  1. 数据获取
python 复制代码
import numpy as np
from mindspore.dataset import vision
from mindspore.dataset import MnistDataset, GeneratorDataset
import matplotlib.pyplot as plt
# Download data from open datasets
from download import download

url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/" \
      "notebook/datasets/MNIST_Data.zip"
path = download(url, "./", kind="zip", replace=True)

这里找数据集:https://www.mindspore.cn/docs/zh-CN/r2.3.0rc2/api_python/mindspore.dataset.html

2.数据迭代

python 复制代码
# shuffle 消除数据排列造成的分布不均问题,及打乱数据顺序
train_dataset = MnistDataset("MNIST_Data/train", shuffle=True)
def visualize(dataset):
    figure = plt.figure(figsize=(4, 4))
    cols, rows = 3, 3

    plt.subplots_adjust(wspace=0.5, hspace=0.5)

    for idx, (image, label) in enumerate(dataset.create_tuple_iterator()):
        figure.add_subplot(rows, cols, idx + 1)
        plt.title(int(label))
        plt.axis("off")
        plt.imshow(image.asnumpy().squeeze(), cmap="gray")
        if idx == cols * rows - 1:
            break
    plt.show()
  1. 数据预处理
python 复制代码
#图像统一除以255,数据类型由uint8转为了float32
train_dataset = train_dataset.map(vision.Rescale(1.0 / 255.0, 0), input_columns='image')
相关推荐
心疼你的一切7 小时前
昇腾CANN实战落地:从智慧城市到AIGC,解锁五大行业AI应用的算力密码
数据仓库·人工智能·深度学习·aigc·智慧城市·cann
chian-ocean7 小时前
量化加速实战:基于 `ops-transformer` 的 INT8 Transformer 推理
人工智能·深度学习·transformer
水月wwww7 小时前
【深度学习】卷积神经网络
人工智能·深度学习·cnn·卷积神经网络
杜子不疼.7 小时前
CANN_Transformer加速库ascend-transformer-boost的大模型推理性能优化实践
深度学习·性能优化·transformer
island13148 小时前
CANN HIXL 高性能单边通信库深度解析:PGAS 模型在异构显存上的地址映射与异步传输机制
人工智能·神经网络·架构
renhongxia18 小时前
如何基于知识图谱进行故障原因、事故原因推理,需要用到哪些算法
人工智能·深度学习·算法·机器学习·自然语言处理·transformer·知识图谱
深鱼~8 小时前
ops-transformer算子库:解锁昇腾大模型加速的关键
人工智能·深度学习·transformer·cann
禁默8 小时前
不仅是 FlashAttention:揭秘 CANN ops-transformer 如何重构大模型推理
深度学习·重构·aigc·transformer·cann
笔画人生8 小时前
进阶解读:`ops-transformer` 内部实现与性能调优实战
人工智能·深度学习·transformer
种时光的人9 小时前
CANN仓库核心解读:ascend-transformer-boost解锁AIGC大模型加速新范式
深度学习·aigc·transformer