机器学习课程复习——ANN

Q:ANN?

基本架构

  • 由输入层、隐藏层、输出层等构建
  • 前馈/反馈传播

工作原理

  • 先加权求和:每个神经元的输出是输入加权和的激活
  • 再送入激活函数:激活函数的存在使得其能够拟合各类非线性任务
  • 联想:像adaboosting的加权求和

Q:要调哪些参数?

见思维导图

Q:基本架构是怎么确定的?

  1. 输入层:根据输入的参数有几个维度确定的
  2. 隐藏层:想加几层加几层,根据效果去调
  3. 每个隐藏层的神经元个数:根据效果去调
  4. 隐藏层之间的激活函数:根据效果去调

Q:更新权重?

在ANN中更新权重主要用到的是前向传播算法和反向传播算法

相关推荐
Mao.O2 小时前
开源项目“AI思维圆桌”的介绍和对于当前AI编程的思考
人工智能
jake don2 小时前
AI 深度学习路线
人工智能·深度学习
信创天地2 小时前
信创场景软件兼容性测试实战:适配国产软硬件生态,破解运行故障难题
人工智能·开源·dubbo·运维开发·risc-v
幻云20102 小时前
Python深度学习:从筑基到登仙
前端·javascript·vue.js·人工智能·python
bst@微胖子2 小时前
LlamaIndex之核心概念及部署以及入门案例
pytorch·深度学习·机器学习
无风听海2 小时前
CBOW 模型中的输出层
人工智能·机器学习
汇智信科2 小时前
智慧矿山和工业大数据解决方案“智能设备管理系统”
大数据·人工智能·工业大数据·智能矿山·汇智信科·智能设备管理系统
静听松涛1333 小时前
跨语言低资源场景下的零样本迁移
人工智能
SEO_juper3 小时前
AI+SEO全景决策指南:10大高价值方法、核心挑战与成本效益分析
人工智能·搜索引擎·seo·数字营销