【深度学习基础】详解Pytorch搭建CNN卷积神经网络LeNet-5实现手写数字识别

目录

写在开头

一、CNN的原理

[1. 概述](#1. 概述)

[2. 卷积层](#2. 卷积层)

内参数(卷积核本身)

外参数(填充和步幅)

输入与输出的尺寸关系

[3. 多通道问题](#3. 多通道问题)

多通道输入

多通道输出

[4. 池化层](#4. 池化层)

平均汇聚

最大值汇聚

二、手写数字识别

[1. 任务描述和数据集加载](#1. 任务描述和数据集加载)

[2. 网络结构(LeNet-5)](#2. 网络结构(LeNet-5))

[3. 模型训练](#3. 模型训练)

[4. 模型测试](#4. 模型测试)

[5. 直观显示预测结果](#5. 直观显示预测结果)

写在最后

写在开头

本文将将介绍如何使用PyTorch框架搭建卷积神经网络(CNN)模型。简易介绍卷积神经网络的原理,并实现模型的搭建、数据集加载、模型训练、测试、网络的保存等。实现机器学习领域的Hello world------手写数字识别。本文的讲解参考了B站两位up主:爆肝杰哥、炮哥带你学。有关Pytorch环境配置和CNN具体原理大家可以自行查阅资料,本文多数图片也来自于爆肝杰哥的讲解。这里也放上两位up主的视频链接:

从0开始撸代码--手把手教你搭建LeNet-5网络模型_哔哩哔哩_bilibili

Python深度学习:安装Anaconda、PyTorch(GPU版)库与PyCharm_哔哩哔哩_bilibili

本文使用的PyTorch为1.12.0版本,Numpy为1.21版本,相近的版本语法差异很小。有关数组的数据结构教程、神经网络的基本原理(前向传播/反向传播)、神经网络作为"函数模拟器"直观感受、深度神经网络的实现DNN详见本专栏的前三篇文章,链接如下:

【深度学习基础】NumPy数组库的使用-CSDN博客

【深度学习基础】用PyTorch从零开始搭建DNN深度神经网络_如何搭建一个深度学习神经网络dnn pytorch-CSDN博客

【深度学习基础】使用Pytorch搭建DNN深度神经网络与手写数字识别_dnn网络模型 代码-CSDN博客

基于深度神经网络DNN实现的手写数字识别,将灰度图像转换后的二维数组展平到一维,将一维的784个特征作为模型输入。在"展平"的过程中必然会失去一些图像的形状结构特征,因此基于DNN的实现方式并不能很好的利用图像的二维结构特征,而卷积神经网络CNN对于处理图像的位置信息具有一定的优势。因此卷积神经网络经常被用于图像识别/处理领域。下面我们将对CNN进行具体介绍。

一、CNN的原理

1. 概述

在上一篇博客介绍的深度神经网络DNN中,网络的每一层神经元相互直接都有链接,每一层都是全连接层,我们的目标就是训练这个全连接层的权重w和偏执b,最终得到预测效果良好的网络结构。

DNN的全连接层对应于CNN中的卷积层,而池化层(汇聚)其实与激活函数的作用类似。CNN中完整的卷积层的结构是:卷积-激活函数-池化(汇聚),其中池化层也有时可以省略。一个卷积神经网络的结构如下:

如上图所示,CNN的优势在于可以处理多为输入数据,并同样以多维数据的形式输出至下一层,保留了更多的空间信息特征。而DNN却只能将多维数据展平成一维数据,必然会损失一些空间特征。

2. 卷积层

内参数(卷积核本身)

CNN中的卷积层和DNN中的全连接层是平级关系,在DNN中,我们训练的内参数是全连接层的权重w和偏置b,CNN也类似,CNN训练的是卷积核,也就相当于包含了权重和偏置两个内部参数。下面我们首先描述什么是卷积运算。当输入数据进入卷积层后,输入数据会与卷积核进行卷积运算,运算方法如下图所示:

输入一个多维数据(上图为二维),与卷积核进行运算,即输入中与卷积核形状相同的部分,分别与卷积核进行逐个元素相乘再相加。例如计算结果中坐上角的15是根据如下过程计算得到的:

逐个元素相乘再相加,即:

1 * 2 + 2 * 0 + 3* 1 + 0 * 0 + 1 * 1 + 2 * 2 + 3 * 1 + 0 * 0 + 1 * 2 = 15

卷积核本身相当于权重,再卷积运算的过程中也可以存在偏置,如下:

卷积核(即CNN的权重和偏置)本身为内参数,(具体里面的数字)是我们通过训练得出的,我们写代码的时候只要关注一些外部设定的参数即可。下面我们将介绍一些外参数。

外参数(填充和步幅)

填充(padding)

显然,只要卷积核的大小>1*1,必然会导致图像越卷越小,为了防止输入经过多个卷积层后变得过小,可以在发生卷积层之前,先向输入图像的外围填入固定的数据(比如0),这个步骤称之为填充,如下图:

在我们使用Pytorch搭建卷积层的时候,需要在对应的接口中添加这个padding参数,向上图中这种情况,相当于在3*3的卷积核外围添加了"一圈",则padding = 1,卷积层的接口中就要这样写:

nn.Conv2d(in_channels=1, out_channels=6, kernel_size=3, paddding=1)

参数in_channels和out_channels是对应于这个卷积层输入和输出的通道数参数,这里我们先放一放。

步幅(stride)

步幅指的是使用卷积核的位置间隔,即输入中参与运算的那个范围每次移动的距离。前面几个示意图中的步幅均为1,即每次移动一格,如果设置stride=2,kernel_size=2,则效果如下:

此时需要在卷积层接口中添加参数stride=2。

输入与输出的尺寸关系

综上所述,结合外参数(步幅、填充)和内参数(卷积核),可以看出如下规律:

卷积核越大,输出越小。

步幅越大,输出越小。

填充越大,输出越大。

用公式表示定量关系:

如果输入和卷积核均为方阵,设输入尺寸为W*W,输出尺寸为N*N,卷积核尺寸为F*F,填充的圈数为P,步幅为S,则有关系:

这个关系大家要重点掌握,也可以自己推导一下,并不复杂。如果输入和卷积核不为方阵,设输入尺寸是H*W,输出尺寸是OH*OW,卷积核尺寸为FH*FW,填充为P,步幅为S,则输出尺寸OH*OW的计算公式是:

3. 多通道问题

多通道输入

对于手写数字识别这种灰度图像,可以视为仅有(高*长)二维的输入。然而,对于彩色图像,每一个像素点都相当于是RGB的三个值的组合,因此对于彩色的图像输入,除了高*长两个维度外,还有第三个维度------通道,即红、绿、蓝三个通道,也可以视为3个单通道的二维图像的混合叠加。

当输入数据仅为二维 时,卷积层的权重往往被称作卷积核(Kernel);

当输入数据为三维或更高 时,卷积层的权重往往被称作滤波器(Filter)

对于多通道输入,输入数据和滤波器的通道数必须保持一致。这样会导致输出结果降维成二维,如下图:

对形状进行一下抽象,则输入数据C*H*W和滤波器C*FH*FW都是长方体,结果是一个长方形1*OH*OW,注意C,H,W是固定的顺序,通道数要写在最前。

多通道输出

如果要实现多通道输出,那么就需要多个滤波器,让三维输入与多个滤波器进行卷积,就可以实现多通道输出,输出的通道数FN就是滤波器的个数FN,如下图:

和单通道一样,卷积运算后也有偏置,如果进一步追加偏置,则结果如下:每个通道都有一个单独的偏置

4. 池化层

池化,也叫汇聚(Pooling)。池化层通常位于卷积层之后(有时也可以不设置池化层),其作用仅仅是在一定范围内提取特征值,所以并不存在要学习的内部参数。池化仅仅对图像的高H和宽W进行特征提取,并不改变通道数C

平均汇聚

一般有平均汇聚和最大值汇聚两种。平均汇聚如下:

如上图,池化的窗口大小为2*2,对应的步幅为2,因此对于上图这种情况,对应的Pytorch接口如下:

nn.AvgPool2d(kernel_size=2, stride=2)

最大值汇聚

同理,如果使用最大值汇聚,如下图所示:

此处Pytorch函数就这么写:

nn.MaxPool2d(kernel_size=2, stride=2)

二、手写数字识别

1. 任务描述和数据集加载

此处和上一篇博客类似,详情见:

【深度学习基础】使用Pytorch搭建DNN深度神经网络与手写数字识别_dnn网络模型 代码-CSDN博客

接下来我们实现机器学习领域的Hello World------手写数字识别。使用的数据集MNIST是机器学习领域的标准数据集,其中的每一个样本都是一副二维的灰度图像,尺寸为28*28:

输入就相当于一个单通道的图像,是二维的。我们在实现的时候,要将每个样本图像转换为28*28的张量,作为输入,此处和上一篇DNN都一致。数据集则通过包torchvision中的datasets库进行下载。这里我快速给一段代码好了,详情可见上一篇博客。

python 复制代码
import torch
from torchvision import datasets, transforms

# 设定下载参数 (数据集转换参数),将图像转换为张量
data_transform = transforms.Compose([
    transforms.ToTensor()
])

# 加载训练数据集
train_dataset = datasets.MNIST(
    root='D:\\Jupyter\\dataset\\minst',  # 下载路径,读者请自行设置
    train=True,   # 是训练集
    download=True,   # 如果该路径没有该数据集,则进行下载
    transform=data_transform   # 数据集转换参数
)

# 批次加载器,在接下来的训练中进行小批次(16批次)的载入数据,有助于提高准确度,对训练集的样本进行打乱,
train_dataloader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=16, shuffle=True)

# 加载测试数据集
test_dataset = datasets.MNIST(
    root='D:\\Jupyter\\dataset\\minst',  # 下载路径
    train=False,   # 是训练集
    download=True,   # 如果该路径没有该数据集,则进行下载
    transform=data_transform   # 数据集转换参数
)

test_dataloader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=16, shuffle=True)

2. 网络结构(LeNet-5)

本文搭建的LeNet-5起源于1998年,在手写数字识别上非常成功。其结构如下:

再列一个表格,具体结构如下:

注:输出层的激活函数目前已经被Softmax取代。

至于这些尺寸关系,我举个两例子吧:

以第一层C1的输入和输出为例。输入尺寸W是28*28,卷积核F尺寸为5*5,步幅S为1,填充P为2,那么输出N的28*28怎么来的呢?按照公式如下:

我们也可以观察到第一层的卷积核个数为6,则输出的通道数也为6。

再看一下第一个池化层S2,输入尺寸是28*28,卷积核F大小为2*2(此处的"卷积核"实际上指的是采样范围),步幅S=2,填充P为0,则输出的14*14是这么算出来的:

其他的没啥好说的,读者们可以自行计算这个尺寸关系。接下来我们给出完整的CNN网络代码,net.py如下:

python 复制代码
import torch
from torch import nn

# 定义网络模型
class MyLeNet5(nn.Module):
    # 初始化网络
    def __init__(self):
        super(MyLeNet5, self).__init__()
        self.net = nn.Sequential(
            nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5, padding=2), nn.Tanh(),
            nn.AvgPool2d(kernel_size=2, stride=2),
            nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5), nn.Tanh(),
            nn.AvgPool2d(kernel_size=2, stride=2),
            nn.Conv2d(in_channels=16, out_channels=120, kernel_size=5),  nn.Tanh(),
            nn.Flatten(),
            nn.Linear(120, 84),  nn.Tanh(),
            nn.Linear(84, 10)
        )

    # 前向传播
    def forward(self, x):
        y = self.net(x)
        return y


# 以下为测试代码,也可不添加
if __name__ == '__main__': 
    x1 = torch.rand([1, 1, 28, 28])
    model = MyLeNet5()
    y1 = model(x1)
    print(x1)
    print(y1)

这里我还在'main'添加了一些测试代码,正如表格中所示,假设我们向网络中输入一个1*1*28*28的向量,模拟批次大小为1,一个单通道28*28的灰度图输入。最终y应该是由10个数字组成的张量,结果如下:

从输出我们可以直观的看到输入经过神经网络前向传播后的结果。另外特别注意这个网络的结构中的参数,其中卷积层的搭建API有5个外参数:

in_channels:输入通道数

out_channels:输出通道数

kernel_size: 卷积核尺寸

padding: 填充,不写则默认0

stride: 步幅,不写则默认1

这个LeNet-5网络结构就长这样,我们一定要严格遵守,否则有可能出现无论怎么训练,都始终欠拟合的情况。我就曾经试过更改/添加不同的激活函数,结果无论是训练还是测试,准确率都在10%徘徊,相当于随机瞎猜的效果,因此大家一定要严格遵循这个网络结构。

3. 模型训练

网络搭建好之后,所有的内参数(即卷积核)都是随机的,下面我们要通过训练尽可能提高网络的预测能力。在训练前,我们首先要选择损失函数(这里使用交叉熵损失函数),定义优化器、进行学习率调整等,代码如下:

python 复制代码
import torch
from torch import nn
from net import MyLeNet5
from torch.optim import lr_scheduler

# 判断是否有gpu
device = "cuda" if torch.cuda.is_available() else "cpu"

# 调用net,将模型数据转移到gpu
model = MyLeNet5().to(device)

# 选择损失函数
loss_fn = nn.CrossEntropyLoss()    # 交叉熵损失函数,自带Softmax激活函数

# 定义优化器
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3, momentum=0.9)

# 学习率每隔10轮次, 变为原来的0.1
lr_scheduler = lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.1)

然后我们可以写一个用于训练网络的函数,四个参数分别是批次加载器、模型、损失函数、优化器,代码如下:

python 复制代码
# 定义模型训练的函数
def train(dataloader, model, loss_fn, optimizer):
    loss, current, n = 0.0, 0.0, 0
    for batch, (X, y) in enumerate(dataloader):
        # 前向传播
        X, y = X.to(device), y.to(device)
        output = model(X)
        cur_loss = loss_fn(output, y)
        # 用_和pred分别接收输出10个元素中的最大值和对应下标位置
        _, pred = torch.max(output, dim=1)
        # 计算当前轮次时,训练集的精确度,将所有标签值与预测值(即下标位置)
        cur_acc = torch.sum(y == pred)/output.shape[0]

        # 反向传播,对内部参数(卷积核)进行优化
        optimizer.zero_grad()
        cur_loss.backward()
        optimizer.step()

        # 计算准确率和损失,这里只是为了实时显示训练集的拟合情况。也可以不写
        loss += cur_loss.item()
        current += cur_acc.item()
        n = n + 1
    print("train_loss: ", str(loss/n))
    print("train_acc: ", str(current/n))

只要调用这个函数,即可实现模型训练:

python 复制代码
train(train_dataloader, model, loss_fn, optimizer)

当然,我们最好是设定一个轮次epoch,我们后续会写这样一个循环,每训练一个epoch,就进行一次测试,实时显示一定轮次后训练集和测试集的拟合情况。

4. 模型测试

这里和模型训练类似,只不过我们要观察训练好的模型,在测试集的预测效果。与训练的代码相似,只是没有了反向传播优化参数的过程。用于测试的函数代码如下:

python 复制代码
def test(dataloader, model, loss_fn):
    model.eval()
    loss, current, n = 0.0, 0.0, 0
    # 该局部关闭梯度计算功能,提高运算效率
    with torch.no_grad():  
        for batch, (X, y) in enumerate(dataloader):
            # 前向传播
            X, y = X.to(device), y.to(device)
            output = model(X)
            cur_loss = loss_fn(output, y)
            _, pred = torch.max(output, dim=1)
            # 计算当前轮次时,训练集的精确度
            cur_acc = torch.sum(y == pred) / output.shape[0]
            loss += cur_loss.item()
            current += cur_acc.item()
            n = n + 1
        print("test_loss: ", str(loss / n))
        print("test_acc: ", str(current / n))
        return current/n    # 返回精确度

如上代码,将测试集的精确度作为返回值,我们在外围调用这个函数时,可以通过循环找到测试集最大的精确度。

最终我们设定一个训练轮次epochs,此处epochs=50,每经过一个epoch的训练,就进行测试,实时打印观察训练集和测试集的拟合情况。当测试集的精确度是当前的最大值时,我们就保存这个模型的参数到save_model/best_model.pth,代码如下:

python 复制代码
import os

# 开始训练
epoch = 50
max_acc = 0
for t in range(epoch):
    print(f"epoch{t+1}\n---------------")
    # 训练模型
    train(train_dataloader, model, loss_fn, optimizer)
    # 测试模型
    a = test(test_dataloader, model, loss_fn)
    # 保存最好的模型参数
    if a > max_acc:
        folder = 'save_model'
        if not os.path.exists(folder):
            os.mkdir(folder)
        max_acc = a
        print("current best model acc = ", a)
        torch.save(model.state_dict(), 'save_model/best_model.pth')
print("Done!")

运行之后可以发现,测试集的精度经过1个epochs就达到了90%以上,最终经过50轮次的训练,测试集精度达到了99%左右:

模型参数也得以保存:

最后给出用于训练和测试的完整代码train.py,如下所示:

python 复制代码
import torch
from torch import nn
from net import MyLeNet5
from torch.optim import lr_scheduler
from torchvision import datasets, transforms
import os

# 将图像转换为张量形式
data_transform = transforms.Compose([
    transforms.ToTensor()
])

# 加载训练数据集
train_dataset = datasets.MNIST(
    root='D:\\Jupyter\\dataset\\minst',  # 下载路径
    train=True,   # 是训练集
    download=True,   # 如果该路径没有该数据集,则进行下载
    transform=data_transform   # 数据集转换参数
)

# 批次加载器
train_dataloader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=16, shuffle=True)

# 加载测试数据集
test_dataset = datasets.MNIST(
    root='D:\\Jupyter\\dataset\\minst',  # 下载路径
    train=False,   # 是训练集
    download=True,   # 如果该路径没有该数据集,则进行下载
    transform=data_transform   # 数据集转换参数
)
test_dataloader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=16, shuffle=True)

# 判断是否有gpu
device = "cuda" if torch.cuda.is_available() else "cpu"

# 调用net,将模型数据转移到gpu
model = MyLeNet5().to(device)

# 选择损失函数
loss_fn = nn.CrossEntropyLoss()    # 交叉熵损失函数,自带Softmax激活函数

# 定义优化器
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3, momentum=0.9)

# 学习率每隔10轮次, 变为原来的0.1
lr_scheduler = lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.1)


# 定于训练函数
def train(dataloader, model, loss_fn, optimizer):
    loss, current, n = 0.0, 0.0, 0
    for batch, (X, y) in enumerate(dataloader):
        # 前向传播
        X, y = X.to(device), y.to(device)
        output = model(X)
        cur_loss = loss_fn(output, y)
        _, pred = torch.max(output, dim=1)
        # 计算当前轮次时,训练集的精确度
        cur_acc = torch.sum(y == pred)/output.shape[0]

        # 反向传播
        optimizer.zero_grad()
        cur_loss.backward()
        optimizer.step()

        loss += cur_loss.item()
        current += cur_acc.item()
        n = n + 1
    print("train_loss: ", str(loss/n))
    print("train_acc: ", str(current/n))


def test(dataloader, model, loss_fn):
    model.eval()
    loss, current, n = 0.0, 0.0, 0
    # 该局部关闭梯度计算功能,提高运算效率
    with torch.no_grad():
        for batch, (X, y) in enumerate(dataloader):
            # 前向传播
            X, y = X.to(device), y.to(device)
            output = model(X)
            cur_loss = loss_fn(output, y)
            _, pred = torch.max(output, dim=1)
            # 计算当前轮次时,训练集的精确度
            cur_acc = torch.sum(y == pred) / output.shape[0]
            loss += cur_loss.item()
            current += cur_acc.item()
            n = n + 1
        print("test_loss: ", str(loss / n))
        print("test_acc: ", str(current / n))
        return current/n    # 返回精确度


# 开始训练
epoch = 50
max_acc = 0
for t in range(epoch):
    print(f"epoch{t+1}\n---------------")
    train(train_dataloader, model, loss_fn, optimizer)
    a = test(test_dataloader, model, loss_fn)
    # 保存最好的模型参数
    if a > max_acc:
        folder = 'save_model'
        if not os.path.exists(folder):
            os.mkdir(folder)
        max_acc = a
        print("current best model acc = ", a)
        torch.save(model.state_dict(), 'save_model/best_model.pth')
print("Done!")

5. 直观显示预测结果

截至目前,我们已经完成了手写数字识别这个任务,但是我们好像对于数据集长什么样并不是很了解,似乎仅仅是用torchvision中的datasets库下载了一下。因此本小节,我们的目标是从数据集取出几个特定的手写数字图片,并查看我们模型对其的预测效果。

首先我们还是加载数据集,和之前的代码一样,这里省略。然后我们加载模型:

python 复制代码
from net import  MyLeNet5

# 调用net,将模型数据转移到gpu
model = MyLeNet5().to(device)
model.load_state_dict(torch.load('./save_model/best_model.pth'))

我们取出测试集中的前5长图片做一个展示即可,完整代码show.py如下:

python 复制代码
import torch
from net import MyLeNet5
from torchvision import datasets, transforms
from torchvision.transforms import ToPILImage

data_transform = transforms.Compose([
    transforms.ToTensor()
])

# 加载训练数据集
train_dataset = datasets.MNIST(
    root='D:\\Jupyter\\dataset\\minst',  # 下载路径
    train=True,   # 是训练集
    download=True,   # 如果该路径没有该数据集,则进行下载
    transform=data_transform   # 数据集转换参数
)

# 加载测试数据集
test_dataset = datasets.MNIST(
    root='D:\\Jupyter\\dataset\\minst',  # 下载路径
    train=False,   # 是训练集
    download=True,   # 如果该路径没有该数据集,则进行下载
    transform=data_transform   # 数据集转换参数
)

# 判断是否有gpu
device = "cuda" if torch.cuda.is_available() else "cpu"

# 调用net,将模型数据转移到gpu
model = MyLeNet5().to(device)
model.load_state_dict(torch.load('./save_model/best_model.pth'))

# 获取结果
classes = [
    "0",
    "1",
    "2",
    "3",
    "4",
    "5",
    "6",
    "7",
    "8",
    "9"
]

# 把tensor转化为图片,方便可视化
image = ToPILImage()

# 进入验证
for i in range(5):
    X, y = test_dataset[i][0], test_dataset[i][1]      # X,y对应第i张图片和标签
    # image是ToPILImage的实例,将Pytorch张量转换为PIL图像,.show()方法会打开图像查看器并显示图像
    image(X).show()
    '''unsqueeze 方法在指定的 dim 维度上扩展张量的维度。这里 dim=0,所以它会在第0维添加一个维度.
    例如,原来的 X 形状是 (1, 28, 28),经过 unsqueeze 处理后,形状变为 (1, 1, 28, 28)。
    这样做的目的是将单张图像扩展成批次大小为1的形式,这样模型可以接收单张图像作为输入。'''
    X = torch.unsqueeze(X, dim=0).float().to(device)
    with torch.no_grad():
        # 前向传播获得预测结果pred(由10个元素组成的张量)
        pred = model(X)
        print(pred)
        # 将预测值和标签转化为对应的数字分类结果,pred中的最大值视为预测分类
        predicted, actual = classes[torch.argmax(pred[0])], classes[y]
        print(f"predicted: {predicted}, actual: {actual}")

运行结果如下,我们可以看到测试集中的前五张图片分别是7,2,1,0,4,且我们的模型都能对其进行成功预测分类。

预测结果均正确,如下:

写在最后

本文介绍了如何使用PyTorch框架搭建卷积神经网络模型CNN。将CNN与DNN进行了类比。CNN中的卷积层与DNN的全连接层是平级关系。我们实现了LeNet-5的模型的搭建、模型训练、测试、网络的复用、直观查看数据集的图片预测结果等,实现了机器学习领域的Hello world------手写数字识别。在CNN原理中,读者应当重点关注输入输出的尺寸关系,并可以对照LeNet-5结构示意图写出对应Pytorch代码。至于模型训练和测试基本都是固定的代码形式。

这篇文章到这里就结束了,后续我还会继续更新深度学习的相关知识,另外近期我个人的研究方向涉及到图神经网络,回头也会更新一些相关博客。如果读者有相关建议或疑问也欢迎评论区与我共同探讨,我一定知无不言。总结不易,还请读者多多点赞关注支持!

相关推荐
数据分析螺丝钉10 分钟前
力扣第218题“天际线问题”
经验分享·python·算法·leetcode·面试
IT·陈寒1 小时前
Kotlin vs Java:深入解析两者之间的最新差异与优劣(全面指南)
java·python·kotlin
AI大模型-王哥1 小时前
神经网络入门:从零到训练
人工智能·深度学习·神经网络·大模型·ai大模型
知识分享小能手1 小时前
从新手到高手:Scala函数式编程完全指南,Scala 访问修饰符(6)
大数据·开发语言·后端·python·数据分析·scala·函数式编程
elderingezez1 小时前
2024年用scrapy爬取BOSS直聘的操作
爬虫·python·scrapy
逼子格1 小时前
66、基于长短期记忆 (LSTM) 网络对序列数据进行分类
人工智能·rnn·深度学习·lstm·长短期记忆网络·序列数据分类
Eiceblue2 小时前
用Python轻松转换Markdown文件为PDF文档
开发语言·vscode·python·pdf·word
nice肥牛2 小时前
Python爬取国家医保平台公开数据
开发语言·爬虫·python·国家医保平台
几度春风里2 小时前
Python特征工程 — 1.4 特征归一化方法详解
python·特征工程·数据归一化
弈秋0012 小时前
llama-factory训练RLHF-PPO模型
人工智能·深度学习·语言模型·自然语言处理·chatgpt·transformer·llama