自动驾驶车辆路径规划

在自动驾驶领域,轨迹搜索(Trajectory Searching)和轨迹生成(Trajectory Generation)是两个密切相关但有所不同的概念,它们都是自动驾驶车辆规划其行驶路径的关键步骤。

轨迹搜索(Trajectory Searching):

轨迹搜索是指在给定的环境中,根据车辆的当前状态和目标位置,搜索一条可行的行驶路径。这个过程通常涉及到对周围环境的感知和理解,以及对可能的行驶路径的评估。轨迹搜索可以基于预先定义的地图数据、实时传感器输入,或者两者的结合。搜索算法可能会考虑多种因素,如障碍物的位置、道路的形状、交通规则和车辆的动力学约束。轨迹搜索的目的是找到一条满足所有约束条件的路径,使得车辆能够安全、有效地从当前位置移动到目标位置。

轨迹生成(Trajectory Generation):

轨迹生成是指在找到可行路径的基础上,进一步细化路径,生成一系列具体的车辆状态(如位置、速度、加速度等)随时间变化的轨迹。这个过程涉及到对车辆动力学和运动学的精确建模,以及对控制输入(如转向角、油门、刹车等)的计算。轨迹生成的目的是生成一条平滑、连续的轨迹,使得车辆能够按照规划的路径行驶,同时满足舒适性、稳定性和安全性要求。轨迹生成通常需要考虑车辆的物理限制,如最大转向角、加速度限制等,以及确保轨迹在实际操作中是可行的。

总结来说,轨迹搜索和轨迹生成是自动驾驶车辆路径规划的两个重要步骤。轨迹搜索关注于找到一条从起点到终点的可行路径,而轨迹生成则关注于如何精确地生成车辆随时间变化的具体行驶状态,以确保车辆能够沿着规划的路径安全、平稳地行驶。

相关推荐
学长讲AI2 分钟前
测评10个论文降AI率/去AI痕迹的工具网站(2025年最新)
人工智能
love530love4 分钟前
【笔记】ComfyUI 启动时端口被占用(PermissionError [winerror 10013])解决方案
人工智能·windows·笔记·stable diffusion·aigc·端口·comfyui
算法与编程之美8 分钟前
PyTorch中torch.flatten()函数的用法
人工智能·pytorch·python·深度学习·机器学习
Biehmltym17 分钟前
【AI】02实现AI Agent全栈:十分钟,跑通Python调用 Gemini(大模型)的小型Web项目
人工智能·windows·python
深圳佛手18 分钟前
IVFFlat 与 HNSW 算法介绍与对比
人工智能·算法·机器学习
山海青风20 分钟前
人工智能基础与应用 - 数据处理、建模与预测流程 1 : 了解人工智能
人工智能·python
wxdlfkj26 分钟前
从硬件极限到算法补偿:构建微米级工件特征“在机测量”闭环系统的技术路径解析
人工智能·算法·机器学习
_codemonster41 分钟前
AI大模型入门到实战系列(十八)微调模型实现分类
人工智能·机器学习·分类
dagouaofei42 分钟前
2026 年工作计划汇报 PPT:多种 AI 方案对比评估
人工智能·python·powerpoint
墨染天姬1 小时前
【AI】2025视频模型排行
人工智能·音视频