自动驾驶车辆路径规划

在自动驾驶领域,轨迹搜索(Trajectory Searching)和轨迹生成(Trajectory Generation)是两个密切相关但有所不同的概念,它们都是自动驾驶车辆规划其行驶路径的关键步骤。

轨迹搜索(Trajectory Searching):

轨迹搜索是指在给定的环境中,根据车辆的当前状态和目标位置,搜索一条可行的行驶路径。这个过程通常涉及到对周围环境的感知和理解,以及对可能的行驶路径的评估。轨迹搜索可以基于预先定义的地图数据、实时传感器输入,或者两者的结合。搜索算法可能会考虑多种因素,如障碍物的位置、道路的形状、交通规则和车辆的动力学约束。轨迹搜索的目的是找到一条满足所有约束条件的路径,使得车辆能够安全、有效地从当前位置移动到目标位置。

轨迹生成(Trajectory Generation):

轨迹生成是指在找到可行路径的基础上,进一步细化路径,生成一系列具体的车辆状态(如位置、速度、加速度等)随时间变化的轨迹。这个过程涉及到对车辆动力学和运动学的精确建模,以及对控制输入(如转向角、油门、刹车等)的计算。轨迹生成的目的是生成一条平滑、连续的轨迹,使得车辆能够按照规划的路径行驶,同时满足舒适性、稳定性和安全性要求。轨迹生成通常需要考虑车辆的物理限制,如最大转向角、加速度限制等,以及确保轨迹在实际操作中是可行的。

总结来说,轨迹搜索和轨迹生成是自动驾驶车辆路径规划的两个重要步骤。轨迹搜索关注于找到一条从起点到终点的可行路径,而轨迹生成则关注于如何精确地生成车辆随时间变化的具体行驶状态,以确保车辆能够沿着规划的路径安全、平稳地行驶。

相关推荐
古希腊掌管学习的神1 小时前
[机器学习]XGBoost(3)——确定树的结构
人工智能·机器学习
ZHOU_WUYI1 小时前
4.metagpt中的软件公司智能体 (ProjectManager 角色)
人工智能·metagpt
靴子学长2 小时前
基于字节大模型的论文翻译(含免费源码)
人工智能·深度学习·nlp
AI_NEW_COME3 小时前
知识库管理系统可扩展性深度测评
人工智能
海棠AI实验室3 小时前
AI的进阶之路:从机器学习到深度学习的演变(一)
人工智能·深度学习·机器学习
hunteritself3 小时前
AI Weekly『12月16-22日』:OpenAI公布o3,谷歌发布首个推理模型,GitHub Copilot免费版上线!
人工智能·gpt·chatgpt·github·openai·copilot
IT古董4 小时前
【机器学习】机器学习的基本分类-强化学习-策略梯度(Policy Gradient,PG)
人工智能·机器学习·分类
centurysee4 小时前
【最佳实践】Anthropic:Agentic系统实践案例
人工智能
mahuifa4 小时前
混合开发环境---使用编程AI辅助开发Qt
人工智能·vscode·qt·qtcreator·编程ai
四口鲸鱼爱吃盐4 小时前
Pytorch | 从零构建GoogleNet对CIFAR10进行分类
人工智能·pytorch·分类