自动驾驶车辆路径规划

在自动驾驶领域,轨迹搜索(Trajectory Searching)和轨迹生成(Trajectory Generation)是两个密切相关但有所不同的概念,它们都是自动驾驶车辆规划其行驶路径的关键步骤。

轨迹搜索(Trajectory Searching):

轨迹搜索是指在给定的环境中,根据车辆的当前状态和目标位置,搜索一条可行的行驶路径。这个过程通常涉及到对周围环境的感知和理解,以及对可能的行驶路径的评估。轨迹搜索可以基于预先定义的地图数据、实时传感器输入,或者两者的结合。搜索算法可能会考虑多种因素,如障碍物的位置、道路的形状、交通规则和车辆的动力学约束。轨迹搜索的目的是找到一条满足所有约束条件的路径,使得车辆能够安全、有效地从当前位置移动到目标位置。

轨迹生成(Trajectory Generation):

轨迹生成是指在找到可行路径的基础上,进一步细化路径,生成一系列具体的车辆状态(如位置、速度、加速度等)随时间变化的轨迹。这个过程涉及到对车辆动力学和运动学的精确建模,以及对控制输入(如转向角、油门、刹车等)的计算。轨迹生成的目的是生成一条平滑、连续的轨迹,使得车辆能够按照规划的路径行驶,同时满足舒适性、稳定性和安全性要求。轨迹生成通常需要考虑车辆的物理限制,如最大转向角、加速度限制等,以及确保轨迹在实际操作中是可行的。

总结来说,轨迹搜索和轨迹生成是自动驾驶车辆路径规划的两个重要步骤。轨迹搜索关注于找到一条从起点到终点的可行路径,而轨迹生成则关注于如何精确地生成车辆随时间变化的具体行驶状态,以确保车辆能够沿着规划的路径安全、平稳地行驶。

相关推荐
喵~来学编程啦30 分钟前
【论文精读】LPT: Long-tailed prompt tuning for image classification
人工智能·深度学习·机器学习·计算机视觉·论文笔记
深圳市青牛科技实业有限公司43 分钟前
【青牛科技】应用方案|D2587A高压大电流DC-DC
人工智能·科技·单片机·嵌入式硬件·机器人·安防监控
水豚AI课代表1 小时前
分析报告、调研报告、工作方案等的提示词
大数据·人工智能·学习·chatgpt·aigc
几两春秋梦_1 小时前
符号回归概念
人工智能·数据挖掘·回归
用户691581141652 小时前
Ascend Extension for PyTorch的源码解析
人工智能
用户691581141652 小时前
Ascend C的编程模型
人工智能
成富3 小时前
文本转SQL(Text-to-SQL),场景介绍与 Spring AI 实现
数据库·人工智能·sql·spring·oracle
CSDN云计算3 小时前
如何以开源加速AI企业落地,红帽带来新解法
人工智能·开源·openshift·红帽·instructlab
艾派森3 小时前
大数据分析案例-基于随机森林算法的智能手机价格预测模型
人工智能·python·随机森林·机器学习·数据挖掘
hairenjing11233 小时前
在 Android 手机上从SD 卡恢复数据的 6 个有效应用程序
android·人工智能·windows·macos·智能手机