【线性代数】6.4 exercise20

answer

To show that \( A \) and \( Q \) have the same column space, we'll use the given hints:

Step 1: Show that \( \text{Col } A \subseteq \text{Col } Q \)

Given \( y \in \text{Col } A \), we can write \( y = Ax \) for some vector \( x \).

Since \( A = QR \) and \( R \) is invertible, we have:

\[ y = Ax = QRx \]

Let \( x' = Rx \). Since \( R \) is invertible, \( x' \) can be any vector in \(\mathbb{R}^n\). Thus:

\[ y = Qx' \]

This shows that \( y \) is also in the column space of \( Q \), i.e., \( \text{Col } A \subseteq \text{Col } Q \).

Step 2: Show that \( \text{Col } Q \subseteq \text{Col } A \)

Given \( y \in \text{Col } Q \), we can write \( y = Qx \) for some vector \( x \).

Since \( A = QR \) and \( R \) is invertible, we can multiply both sides by \( R^{-1} \):

\[ Q = AR^{-1} \]

Thus:

\[ y = Qx = AR^{-1}x \]

Let \( x' = R^{-1}x \). Since \( R \) is invertible, \( x' \) can be any vector in \(\mathbb{R}^n\). Thus:

\[ y = Ax' \]

This shows that \( y \) is also in the column space of \( A \), i.e., \( \text{Col } Q \subseteq \text{Col } A \).

Conclusion

Since we've shown that \( \text{Col } A \subseteq \text{Col } Q \) and \( \text{Col } Q \subseteq \text{Col } A \), we conclude that \( \text{Col } A = \text{Col } Q \).

Therefore, \( A \) and \( Q \) have the same column space.

details

To understand why \( x' \) can be any vector in \(\mathbb{R}^n\), let's break it down step by step.

Understanding the Concept

Given that \( R \) is an invertible matrix:

  1. **Invertibility of \( R \)**: Since \( R \) is invertible, there exists a matrix \( R^{-1} \) such that:

\[ R R^{-1} = I \]

where \( I \) is the identity matrix.

  1. **Transformation by \( R \)**: Any vector \( x \in \mathbb{R}^n \) can be transformed by multiplying it by \( R \), resulting in a new vector \( x' \). We write:

\[ x' = Rx \]

  1. **Invertible Transformation**: Because \( R \) is invertible, we can always find \( x \) given \( x' \) by multiplying \( x' \) by \( R^{-1} \):

\[ x = R^{-1} x' \]

Why \( x' \) Can Be Any Vector in \(\mathbb{R}^n\)

Let's see why \( x' \) can be any vector in \(\mathbb{R}^n\):

  1. **Surjectivity**: The function \( f: \mathbb{R}^n \to \mathbb{R}^n \) defined by \( f(x) = Rx \) is surjective because for any vector \( x' \) in the output space (the codomain), there exists an \( x \) in the input space (the domain) such that \( Rx = x' \). This is because \( R \) has full rank (since it's invertible).

  2. **Vector Space Mapping**: Since \( R \) maps \( \mathbb{R}^n \) to itself in a bijective manner (one-to-one and onto), for every vector \( x' \in \mathbb{R}^n \), there exists a vector \( x \in \mathbb{R}^n \) such that \( x' = Rx \).

  3. **Existence of \( x \)**: Given any vector \( x' \in \mathbb{R}^n \), we can always find a corresponding vector \( x \) using \( x = R^{-1} x' \). Therefore, \( x' \) can be any vector in \(\mathbb{R}^n\).

Example

Let's consider a concrete example with \( R \):

  1. Suppose \( R \) is a 2x2 invertible matrix:

\[ R = \begin{pmatrix} 2 & 1 \\ 1 & 3 \end{pmatrix} \]

  1. We can find \( R^{-1} \):

\[ R^{-1} = \frac{1}{5} \begin{pmatrix} 3 & -1 \\ -1 & 2 \end{pmatrix} \]

  1. Now, given any vector \( x' \in \mathbb{R}^2 \), say \( x' = \begin{pmatrix} 4 \\ 5 \end{pmatrix} \):

\[ x = R^{-1} x' = \frac{1}{5} \begin{pmatrix} 3 & -1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 4 \\ 5 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 3 \cdot 4 + (-1) \cdot 5 \\ (-1) \cdot 4 + 2 \cdot 5 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 12 - 5 \\ -4 + 10 \end{pmatrix} = \begin{pmatrix} 1.4 \\ 1.2 \end{pmatrix} \]

This shows that for any \( x' \), we can find an \( x \) such that \( x' = Rx \), thus demonstrating that \( x' \) can indeed be any vector in \(\mathbb{R}^n\).

By understanding this property of invertible matrices, we can see why \( x' \) can be any vector in \(\mathbb{R}^n\).

相关推荐
最好有梦想~1 分钟前
Lua 学习笔记
笔记·学习·lua
zhangrelay8 分钟前
如何更环保(更省钱)的使用各类电子耗材/消耗品/易损件~电池为例
linux·笔记·学习
BlackWolfSky12 分钟前
鸿蒙中级课程笔记2—状态管理V2—@Monitor装饰器:状态变量修改监听
笔记·华为·harmonyos
renhongxia116 分钟前
TANDEM:多模态仇恨言论的时间感知神经检测
人工智能·深度学习·学习·语言模型·自然语言处理
●VON17 分钟前
Flutter 与 OpenHarmony 技术选型分析:为何构建待办事项应用选择此组合?
学习·flutter·跨平台·von
QZ_orz_freedom19 分钟前
后端学习笔记-HttpClient,微信登录
笔记·学习
修己xj20 分钟前
Yank Note: 一款强大可扩展的本地 Markdown 笔记应用
笔记
pawpaw7721 分钟前
鑫通态HMI屏组态软件ApusIDE学习 - 显示GIF动画
学习·hmi·组态软件·鑫通态·apuside·组态屏
BlackWolfSky22 分钟前
鸿蒙中级课程笔记2—状态管理V2—@Provider装饰器和@Consumer装饰器:跨组件层级双向同步
笔记·华为·harmonyos
胖少年39 分钟前
Ubuntu 24.04 LTS apt autoremove 误删依赖致程序崩溃 解决与预防笔记
linux·笔记·ubuntu