【线性代数】6.4 exercise20

answer

To show that \( A \) and \( Q \) have the same column space, we'll use the given hints:

Step 1: Show that \( \text{Col } A \subseteq \text{Col } Q \)

Given \( y \in \text{Col } A \), we can write \( y = Ax \) for some vector \( x \).

Since \( A = QR \) and \( R \) is invertible, we have:

\[ y = Ax = QRx \]

Let \( x' = Rx \). Since \( R \) is invertible, \( x' \) can be any vector in \(\mathbb{R}^n\). Thus:

\[ y = Qx' \]

This shows that \( y \) is also in the column space of \( Q \), i.e., \( \text{Col } A \subseteq \text{Col } Q \).

Step 2: Show that \( \text{Col } Q \subseteq \text{Col } A \)

Given \( y \in \text{Col } Q \), we can write \( y = Qx \) for some vector \( x \).

Since \( A = QR \) and \( R \) is invertible, we can multiply both sides by \( R^{-1} \):

\[ Q = AR^{-1} \]

Thus:

\[ y = Qx = AR^{-1}x \]

Let \( x' = R^{-1}x \). Since \( R \) is invertible, \( x' \) can be any vector in \(\mathbb{R}^n\). Thus:

\[ y = Ax' \]

This shows that \( y \) is also in the column space of \( A \), i.e., \( \text{Col } Q \subseteq \text{Col } A \).

Conclusion

Since we've shown that \( \text{Col } A \subseteq \text{Col } Q \) and \( \text{Col } Q \subseteq \text{Col } A \), we conclude that \( \text{Col } A = \text{Col } Q \).

Therefore, \( A \) and \( Q \) have the same column space.

details

To understand why \( x' \) can be any vector in \(\mathbb{R}^n\), let's break it down step by step.

Understanding the Concept

Given that \( R \) is an invertible matrix:

  1. **Invertibility of \( R \)**: Since \( R \) is invertible, there exists a matrix \( R^{-1} \) such that:

\[ R R^{-1} = I \]

where \( I \) is the identity matrix.

  1. **Transformation by \( R \)**: Any vector \( x \in \mathbb{R}^n \) can be transformed by multiplying it by \( R \), resulting in a new vector \( x' \). We write:

\[ x' = Rx \]

  1. **Invertible Transformation**: Because \( R \) is invertible, we can always find \( x \) given \( x' \) by multiplying \( x' \) by \( R^{-1} \):

\[ x = R^{-1} x' \]

Why \( x' \) Can Be Any Vector in \(\mathbb{R}^n\)

Let's see why \( x' \) can be any vector in \(\mathbb{R}^n\):

  1. **Surjectivity**: The function \( f: \mathbb{R}^n \to \mathbb{R}^n \) defined by \( f(x) = Rx \) is surjective because for any vector \( x' \) in the output space (the codomain), there exists an \( x \) in the input space (the domain) such that \( Rx = x' \). This is because \( R \) has full rank (since it's invertible).

  2. **Vector Space Mapping**: Since \( R \) maps \( \mathbb{R}^n \) to itself in a bijective manner (one-to-one and onto), for every vector \( x' \in \mathbb{R}^n \), there exists a vector \( x \in \mathbb{R}^n \) such that \( x' = Rx \).

  3. **Existence of \( x \)**: Given any vector \( x' \in \mathbb{R}^n \), we can always find a corresponding vector \( x \) using \( x = R^{-1} x' \). Therefore, \( x' \) can be any vector in \(\mathbb{R}^n\).

Example

Let's consider a concrete example with \( R \):

  1. Suppose \( R \) is a 2x2 invertible matrix:

\[ R = \begin{pmatrix} 2 & 1 \\ 1 & 3 \end{pmatrix} \]

  1. We can find \( R^{-1} \):

\[ R^{-1} = \frac{1}{5} \begin{pmatrix} 3 & -1 \\ -1 & 2 \end{pmatrix} \]

  1. Now, given any vector \( x' \in \mathbb{R}^2 \), say \( x' = \begin{pmatrix} 4 \\ 5 \end{pmatrix} \):

\[ x = R^{-1} x' = \frac{1}{5} \begin{pmatrix} 3 & -1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 4 \\ 5 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 3 \cdot 4 + (-1) \cdot 5 \\ (-1) \cdot 4 + 2 \cdot 5 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 12 - 5 \\ -4 + 10 \end{pmatrix} = \begin{pmatrix} 1.4 \\ 1.2 \end{pmatrix} \]

This shows that for any \( x' \), we can find an \( x \) such that \( x' = Rx \), thus demonstrating that \( x' \) can indeed be any vector in \(\mathbb{R}^n\).

By understanding this property of invertible matrices, we can see why \( x' \) can be any vector in \(\mathbb{R}^n\).

相关推荐
FAREWELL0007510 小时前
Lua学习记录(4) --- Lua中多文件调用 以及 关于位运算符的零碎知识点
开发语言·学习·lua
woodykissme10 小时前
齿轮如何撬动工业文明的进程
学习·机械·齿轮·传动
码界奇点10 小时前
Java大数据在智能教育个性化学习资源推荐中的冷启动解决方案
java·大数据·学习·动画·推荐算法
摇滚侠10 小时前
零基础小白自学 Git_Github 教程,分支合并,笔记13
笔记·git·github
DJ斯特拉11 小时前
Tlias智能学习辅助系统(一)
学习
灰灰勇闯IT11 小时前
隐语MOOC三期笔记:可信数据空间实战课——从“数据孤岛”到“安全流通”,企业落地的3个关键步骤(附部署脚本)
笔记·安全
oscar99911 小时前
线性代数第三章 向量
线性代数
列星随旋11 小时前
redis分片集群的部署和使用
redis·学习
Chennnng12 小时前
rsl_rl框架学习
学习
jyan_敬言12 小时前
【Docker】Kubernetes部署容器化应用程序
c++·笔记·其他·docker·容器·kubernetes·学习方法