【线性代数】6.4 exercise20

answer

To show that \( A \) and \( Q \) have the same column space, we'll use the given hints:

Step 1: Show that \( \text{Col } A \subseteq \text{Col } Q \)

Given \( y \in \text{Col } A \), we can write \( y = Ax \) for some vector \( x \).

Since \( A = QR \) and \( R \) is invertible, we have:

\[ y = Ax = QRx \]

Let \( x' = Rx \). Since \( R \) is invertible, \( x' \) can be any vector in \(\mathbb{R}^n\). Thus:

\[ y = Qx' \]

This shows that \( y \) is also in the column space of \( Q \), i.e., \( \text{Col } A \subseteq \text{Col } Q \).

Step 2: Show that \( \text{Col } Q \subseteq \text{Col } A \)

Given \( y \in \text{Col } Q \), we can write \( y = Qx \) for some vector \( x \).

Since \( A = QR \) and \( R \) is invertible, we can multiply both sides by \( R^{-1} \):

\[ Q = AR^{-1} \]

Thus:

\[ y = Qx = AR^{-1}x \]

Let \( x' = R^{-1}x \). Since \( R \) is invertible, \( x' \) can be any vector in \(\mathbb{R}^n\). Thus:

\[ y = Ax' \]

This shows that \( y \) is also in the column space of \( A \), i.e., \( \text{Col } Q \subseteq \text{Col } A \).

Conclusion

Since we've shown that \( \text{Col } A \subseteq \text{Col } Q \) and \( \text{Col } Q \subseteq \text{Col } A \), we conclude that \( \text{Col } A = \text{Col } Q \).

Therefore, \( A \) and \( Q \) have the same column space.

details

To understand why \( x' \) can be any vector in \(\mathbb{R}^n\), let's break it down step by step.

Understanding the Concept

Given that \( R \) is an invertible matrix:

  1. **Invertibility of \( R \)**: Since \( R \) is invertible, there exists a matrix \( R^{-1} \) such that:

\[ R R^{-1} = I \]

where \( I \) is the identity matrix.

  1. **Transformation by \( R \)**: Any vector \( x \in \mathbb{R}^n \) can be transformed by multiplying it by \( R \), resulting in a new vector \( x' \). We write:

\[ x' = Rx \]

  1. **Invertible Transformation**: Because \( R \) is invertible, we can always find \( x \) given \( x' \) by multiplying \( x' \) by \( R^{-1} \):

\[ x = R^{-1} x' \]

Why \( x' \) Can Be Any Vector in \(\mathbb{R}^n\)

Let's see why \( x' \) can be any vector in \(\mathbb{R}^n\):

  1. **Surjectivity**: The function \( f: \mathbb{R}^n \to \mathbb{R}^n \) defined by \( f(x) = Rx \) is surjective because for any vector \( x' \) in the output space (the codomain), there exists an \( x \) in the input space (the domain) such that \( Rx = x' \). This is because \( R \) has full rank (since it's invertible).

  2. **Vector Space Mapping**: Since \( R \) maps \( \mathbb{R}^n \) to itself in a bijective manner (one-to-one and onto), for every vector \( x' \in \mathbb{R}^n \), there exists a vector \( x \in \mathbb{R}^n \) such that \( x' = Rx \).

  3. **Existence of \( x \)**: Given any vector \( x' \in \mathbb{R}^n \), we can always find a corresponding vector \( x \) using \( x = R^{-1} x' \). Therefore, \( x' \) can be any vector in \(\mathbb{R}^n\).

Example

Let's consider a concrete example with \( R \):

  1. Suppose \( R \) is a 2x2 invertible matrix:

\[ R = \begin{pmatrix} 2 & 1 \\ 1 & 3 \end{pmatrix} \]

  1. We can find \( R^{-1} \):

\[ R^{-1} = \frac{1}{5} \begin{pmatrix} 3 & -1 \\ -1 & 2 \end{pmatrix} \]

  1. Now, given any vector \( x' \in \mathbb{R}^2 \), say \( x' = \begin{pmatrix} 4 \\ 5 \end{pmatrix} \):

\[ x = R^{-1} x' = \frac{1}{5} \begin{pmatrix} 3 & -1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 4 \\ 5 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 3 \cdot 4 + (-1) \cdot 5 \\ (-1) \cdot 4 + 2 \cdot 5 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 12 - 5 \\ -4 + 10 \end{pmatrix} = \begin{pmatrix} 1.4 \\ 1.2 \end{pmatrix} \]

This shows that for any \( x' \), we can find an \( x \) such that \( x' = Rx \), thus demonstrating that \( x' \) can indeed be any vector in \(\mathbb{R}^n\).

By understanding this property of invertible matrices, we can see why \( x' \) can be any vector in \(\mathbb{R}^n\).

相关推荐
ZH154558913116 分钟前
Flutter for OpenHarmony Python学习助手实战:Web开发框架应用的实现
python·学习·flutter
百锦再29 分钟前
Vue高阶知识:利用 defineModel 特性开发搜索组件组合
前端·vue.js·学习·flutter·typescript·前端框架
CappuccinoRose1 小时前
JavaScript 学习文档(二)
前端·javascript·学习·数据类型·运算符·箭头函数·变量声明
A9better1 小时前
C++——不一样的I/O工具与名称空间
开发语言·c++·学习
小乔的编程内容分享站1 小时前
C语言笔记之函数
c语言·笔记
AI职业加油站1 小时前
职业提升之路:我的大数据分析师学习与备考分享
大数据·人工智能·经验分享·学习·职场和发展·数据分析
四谎真好看2 小时前
JavaWeb学习笔记(Day13)
笔记·学习·学习笔记·javaweb
ZH15455891312 小时前
Flutter for OpenHarmony Python学习助手实战:机器学习算法实现的实现
python·学习·flutter
深鱼~2 小时前
大模型底层算力支撑:ops-math在矩阵乘法上的优化
人工智能·线性代数·矩阵·cann
Zfox_2 小时前
CANN PyPTO 编程范式深度解析:并行张量与 Tile 分块操作的架构原理、内存控制与流水线调度机制
线性代数·矩阵·架构