【线性代数】6.4 exercise20

answer

To show that \( A \) and \( Q \) have the same column space, we'll use the given hints:

Step 1: Show that \( \text{Col } A \subseteq \text{Col } Q \)

Given \( y \in \text{Col } A \), we can write \( y = Ax \) for some vector \( x \).

Since \( A = QR \) and \( R \) is invertible, we have:

\[ y = Ax = QRx \]

Let \( x' = Rx \). Since \( R \) is invertible, \( x' \) can be any vector in \(\mathbb{R}^n\). Thus:

\[ y = Qx' \]

This shows that \( y \) is also in the column space of \( Q \), i.e., \( \text{Col } A \subseteq \text{Col } Q \).

Step 2: Show that \( \text{Col } Q \subseteq \text{Col } A \)

Given \( y \in \text{Col } Q \), we can write \( y = Qx \) for some vector \( x \).

Since \( A = QR \) and \( R \) is invertible, we can multiply both sides by \( R^{-1} \):

\[ Q = AR^{-1} \]

Thus:

\[ y = Qx = AR^{-1}x \]

Let \( x' = R^{-1}x \). Since \( R \) is invertible, \( x' \) can be any vector in \(\mathbb{R}^n\). Thus:

\[ y = Ax' \]

This shows that \( y \) is also in the column space of \( A \), i.e., \( \text{Col } Q \subseteq \text{Col } A \).

Conclusion

Since we've shown that \( \text{Col } A \subseteq \text{Col } Q \) and \( \text{Col } Q \subseteq \text{Col } A \), we conclude that \( \text{Col } A = \text{Col } Q \).

Therefore, \( A \) and \( Q \) have the same column space.

details

To understand why \( x' \) can be any vector in \(\mathbb{R}^n\), let's break it down step by step.

Understanding the Concept

Given that \( R \) is an invertible matrix:

  1. **Invertibility of \( R \)**: Since \( R \) is invertible, there exists a matrix \( R^{-1} \) such that:

\[ R R^{-1} = I \]

where \( I \) is the identity matrix.

  1. **Transformation by \( R \)**: Any vector \( x \in \mathbb{R}^n \) can be transformed by multiplying it by \( R \), resulting in a new vector \( x' \). We write:

\[ x' = Rx \]

  1. **Invertible Transformation**: Because \( R \) is invertible, we can always find \( x \) given \( x' \) by multiplying \( x' \) by \( R^{-1} \):

\[ x = R^{-1} x' \]

Why \( x' \) Can Be Any Vector in \(\mathbb{R}^n\)

Let's see why \( x' \) can be any vector in \(\mathbb{R}^n\):

  1. **Surjectivity**: The function \( f: \mathbb{R}^n \to \mathbb{R}^n \) defined by \( f(x) = Rx \) is surjective because for any vector \( x' \) in the output space (the codomain), there exists an \( x \) in the input space (the domain) such that \( Rx = x' \). This is because \( R \) has full rank (since it's invertible).

  2. **Vector Space Mapping**: Since \( R \) maps \( \mathbb{R}^n \) to itself in a bijective manner (one-to-one and onto), for every vector \( x' \in \mathbb{R}^n \), there exists a vector \( x \in \mathbb{R}^n \) such that \( x' = Rx \).

  3. **Existence of \( x \)**: Given any vector \( x' \in \mathbb{R}^n \), we can always find a corresponding vector \( x \) using \( x = R^{-1} x' \). Therefore, \( x' \) can be any vector in \(\mathbb{R}^n\).

Example

Let's consider a concrete example with \( R \):

  1. Suppose \( R \) is a 2x2 invertible matrix:

\[ R = \begin{pmatrix} 2 & 1 \\ 1 & 3 \end{pmatrix} \]

  1. We can find \( R^{-1} \):

\[ R^{-1} = \frac{1}{5} \begin{pmatrix} 3 & -1 \\ -1 & 2 \end{pmatrix} \]

  1. Now, given any vector \( x' \in \mathbb{R}^2 \), say \( x' = \begin{pmatrix} 4 \\ 5 \end{pmatrix} \):

\[ x = R^{-1} x' = \frac{1}{5} \begin{pmatrix} 3 & -1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 4 \\ 5 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 3 \cdot 4 + (-1) \cdot 5 \\ (-1) \cdot 4 + 2 \cdot 5 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 12 - 5 \\ -4 + 10 \end{pmatrix} = \begin{pmatrix} 1.4 \\ 1.2 \end{pmatrix} \]

This shows that for any \( x' \), we can find an \( x \) such that \( x' = Rx \), thus demonstrating that \( x' \) can indeed be any vector in \(\mathbb{R}^n\).

By understanding this property of invertible matrices, we can see why \( x' \) can be any vector in \(\mathbb{R}^n\).

相关推荐
我的golang之路果然有问题31 分钟前
云服务器部署Gin+gorm 项目 demo
运维·服务器·后端·学习·golang·gin
柠石榴1 小时前
【论文阅读笔记】《A survey on deep learning approaches for text-to-SQL》
论文阅读·笔记·深度学习·nlp·text-to-sql
田梓燊2 小时前
数学复习笔记 27
笔记
Lester_11012 小时前
嵌入式学习笔记 - freeRTOS xTaskResumeAll( )函数解析
笔记·stm32·单片机·学习·freertos
jackson凌2 小时前
【Java学习笔记】Math方法
java·笔记·学习
z2014z2 小时前
软件评测师 综合测试 真题笔记
笔记
Humbunklung2 小时前
PySide6 GUI 学习笔记——常用类及控件使用方法(多行文本控件QTextEdit)
笔记·python·学习·pyqt
取酒鱼食--【余九】2 小时前
rl_sar实现sim2real的整体思路
人工智能·笔记·算法·rl_sar
sealaugh322 小时前
aws(学习笔记第四十三课) s3_sns_sqs_lambda_chain
笔记·学习·aws
阿超爱嵌入式2 小时前
STM32学习之I2C(理论篇)
stm32·嵌入式硬件·学习