【线性代数】6.4 exercise20

answer

To show that \( A \) and \( Q \) have the same column space, we'll use the given hints:

Step 1: Show that \( \text{Col } A \subseteq \text{Col } Q \)

Given \( y \in \text{Col } A \), we can write \( y = Ax \) for some vector \( x \).

Since \( A = QR \) and \( R \) is invertible, we have:

\[ y = Ax = QRx \]

Let \( x' = Rx \). Since \( R \) is invertible, \( x' \) can be any vector in \(\mathbb{R}^n\). Thus:

\[ y = Qx' \]

This shows that \( y \) is also in the column space of \( Q \), i.e., \( \text{Col } A \subseteq \text{Col } Q \).

Step 2: Show that \( \text{Col } Q \subseteq \text{Col } A \)

Given \( y \in \text{Col } Q \), we can write \( y = Qx \) for some vector \( x \).

Since \( A = QR \) and \( R \) is invertible, we can multiply both sides by \( R^{-1} \):

\[ Q = AR^{-1} \]

Thus:

\[ y = Qx = AR^{-1}x \]

Let \( x' = R^{-1}x \). Since \( R \) is invertible, \( x' \) can be any vector in \(\mathbb{R}^n\). Thus:

\[ y = Ax' \]

This shows that \( y \) is also in the column space of \( A \), i.e., \( \text{Col } Q \subseteq \text{Col } A \).

Conclusion

Since we've shown that \( \text{Col } A \subseteq \text{Col } Q \) and \( \text{Col } Q \subseteq \text{Col } A \), we conclude that \( \text{Col } A = \text{Col } Q \).

Therefore, \( A \) and \( Q \) have the same column space.

details

To understand why \( x' \) can be any vector in \(\mathbb{R}^n\), let's break it down step by step.

Understanding the Concept

Given that \( R \) is an invertible matrix:

  1. **Invertibility of \( R \)**: Since \( R \) is invertible, there exists a matrix \( R^{-1} \) such that:

\[ R R^{-1} = I \]

where \( I \) is the identity matrix.

  1. **Transformation by \( R \)**: Any vector \( x \in \mathbb{R}^n \) can be transformed by multiplying it by \( R \), resulting in a new vector \( x' \). We write:

\[ x' = Rx \]

  1. **Invertible Transformation**: Because \( R \) is invertible, we can always find \( x \) given \( x' \) by multiplying \( x' \) by \( R^{-1} \):

\[ x = R^{-1} x' \]

Why \( x' \) Can Be Any Vector in \(\mathbb{R}^n\)

Let's see why \( x' \) can be any vector in \(\mathbb{R}^n\):

  1. **Surjectivity**: The function \( f: \mathbb{R}^n \to \mathbb{R}^n \) defined by \( f(x) = Rx \) is surjective because for any vector \( x' \) in the output space (the codomain), there exists an \( x \) in the input space (the domain) such that \( Rx = x' \). This is because \( R \) has full rank (since it's invertible).

  2. **Vector Space Mapping**: Since \( R \) maps \( \mathbb{R}^n \) to itself in a bijective manner (one-to-one and onto), for every vector \( x' \in \mathbb{R}^n \), there exists a vector \( x \in \mathbb{R}^n \) such that \( x' = Rx \).

  3. **Existence of \( x \)**: Given any vector \( x' \in \mathbb{R}^n \), we can always find a corresponding vector \( x \) using \( x = R^{-1} x' \). Therefore, \( x' \) can be any vector in \(\mathbb{R}^n\).

Example

Let's consider a concrete example with \( R \):

  1. Suppose \( R \) is a 2x2 invertible matrix:

\[ R = \begin{pmatrix} 2 & 1 \\ 1 & 3 \end{pmatrix} \]

  1. We can find \( R^{-1} \):

\[ R^{-1} = \frac{1}{5} \begin{pmatrix} 3 & -1 \\ -1 & 2 \end{pmatrix} \]

  1. Now, given any vector \( x' \in \mathbb{R}^2 \), say \( x' = \begin{pmatrix} 4 \\ 5 \end{pmatrix} \):

\[ x = R^{-1} x' = \frac{1}{5} \begin{pmatrix} 3 & -1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 4 \\ 5 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 3 \cdot 4 + (-1) \cdot 5 \\ (-1) \cdot 4 + 2 \cdot 5 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 12 - 5 \\ -4 + 10 \end{pmatrix} = \begin{pmatrix} 1.4 \\ 1.2 \end{pmatrix} \]

This shows that for any \( x' \), we can find an \( x \) such that \( x' = Rx \), thus demonstrating that \( x' \) can indeed be any vector in \(\mathbb{R}^n\).

By understanding this property of invertible matrices, we can see why \( x' \) can be any vector in \(\mathbb{R}^n\).

相关推荐
递归不收敛20 小时前
大语言模型(LLM)入门笔记:嵌入向量与位置信息
人工智能·笔记·语言模型
冷雨夜中漫步20 小时前
高级系统架构师笔记——数据库设计基础知识(5)Armstrong公理系统、无损连接和有损连接
笔记·系统架构
deng-c-f21 小时前
Linux C/C++ 学习日记(28):KCP协议(四):如何实现更复杂的业务:将连接状态的管理进行封装,用户只需实现发送、接收、断开的处理逻辑。
学习·网络编程·kcp
im_AMBER1 天前
算法笔记 05
笔记·算法·哈希算法
Element_南笙1 天前
吴恩达新课程:Agentic AI(笔记2)
数据库·人工智能·笔记·python·深度学习·ui·自然语言处理
koo3641 天前
李宏毅机器学习笔记21-26周汇总
人工智能·笔记·机器学习
.小小陈.1 天前
数据结构2:单链表
c语言·开发语言·数据结构·笔记·学习方法
立志成为大牛的小牛1 天前
数据结构——二十三、并查集的终极优化(王道408)
开发语言·数据结构·笔记·学习·程序人生·考研
全栈游侠1 天前
04-优先级与延时链表
笔记
im_AMBER1 天前
React 01
前端·javascript·笔记·react.js·前端框架·web