【机器学习 复习】第6章 支持向量机(SVM)

一、概念

1.支持向量机(support vector machine,SVM):

(1)基于统计学理论的监督学习方法,但不属于生成式模型,而是判别式模型。

(2)支持向量机在各个领域内的模式识别问题中都有广泛应用,包括人脸识别、文本分类、笔迹识别等。

(3)在解决小样本、非线性及高维模式识别等问题中表现出了许多特有的优势。

(4)在函数模拟、模式识别和数据分类等领域也取得了极好的应用效果。

2.分三种,但是前两种差不多:

(1)线性可分时,通过硬间隔最大化。

(2)近似线性可分时,通过软间隔最大化。

(3)不可分时,通过使用核技巧以及软间隔最大化。

3.线性可分SVM

(1)原理:在这n维的数据空间中找到一个超平面(Hyper Plane),将所有的正例划分到超平面的一侧,将所有的负例划分到超平面的另一侧。

(2)超平面可以有无数个,所以寻找边际最大的平面。

(3)硬间隔缺点:

对于异常值过于敏感,就是有的值它离超平面异常的近,导致一系列问题

(4)所以引入了软间隔,也就是上面的近似线性可分,它nb在允许少量分类错误,以此消除硬间隔所产生的问题。

(5)上述只是二分类,但是多分类也可以,不要产生思维禁锢,了解即可。

4.非线性问题(核函数)

(1)在空间中无法用一条直线(线性)将数据集中的正例和负例正确地分隔开,但可以用一条圆形曲线(非线性)分隔。

(2)对此,采用核函数来解决,原理是从低纬升至高维,是的,你没有看错,相当于从一张纸变成一块积木。

但是看似复杂了,但是实际上也确实很难。

但是解释起来很简单,就是把正例和负例从原来在一个面上剥离,一个全部在"上面",一个全部在下面。

(3)对此产生的问题:维度灾难

二、习题

多选题:

  1. 下列关于支持向量机的说法正确的是( ABC )

A、可用于多分类问题

B、超平面的位置仅由支持向量决定,与其他样本点无关。

C、支持非线性的核函数

D、是一种监督式的学习方法,属于生成式模型。

相关推荐
星诺算法备案2 分钟前
AI小程序合规指南:从上线要求到标识的“双保险”
人工智能·算法·推荐算法·备案
一只乔哇噻20 分钟前
java后端工程师+AI大模型开发进修ing(研一版‖day61)
java·开发语言·学习·算法·语言模型
Jay200211122 分钟前
【机器学习】28-29 推荐系统 & 推荐系统实现
人工智能·python·机器学习
_oP_i23 分钟前
常见、主流、可靠的机器学习与深度学习训练集网站
人工智能·深度学习·机器学习
zery23 分钟前
Label Studio 切换到PostgreSQL 数据库
目标检测·机器学习
Cx330❀33 分钟前
Git 基础操作通关指南:版本回退、撤销修改与文件删除深度解析
大数据·运维·服务器·git·算法·搜索引擎·面试
前端小白在前进35 分钟前
力扣刷题:合并两个有序数组
算法·leetcode·职场和发展
光羽隹衡1 小时前
机器学习的介绍
人工智能·机器学习
john_hjy1 小时前
标量、向量、矩阵、张量
算法·机器学习·矩阵
qq_430855881 小时前
线代第一章行列式第八课:克莱姆法则(Cramer法则)
线性代数·算法·矩阵