【多模态】BEIT: BERT Pre-Training of Image Transformers

论文:BEIT: BERT Pre-Training of Image Transformers

链接:https://arxiv.org/pdf/2301.00184

Introduction

  1. BEIT(Bidirectional Encoder representation from Image Transformers)
  2. Motivation: 启发于BERT的自编码方式(随机mask进行token预测)
  3. 难点:没有视觉词表,无法简单应用softmax分类器预测candidates。
  4. 直观感受是将该问题视为回归问题,预测masked patch的每个像素点,但是这会导致浪费模型能力在建立短程依赖和高频细节上。(waste modeling capability on pre-training shortrange dependencies and high-frequency details)
  5. 最终解决方案
    1) Overview

    2)两种view,image patches and visual tokens。首先将图像划分为patches并随机mask作为模型输入。然后通过VAE将图像tokenize为离散的视觉token。模型最终学习目标为,recover the visual tokens not pixels of masked patches。
    3)实验结果:BEIT 优于从头开始训练和以前的强自监督模型

Details

  1. Image Patch,输入图像维度 x ∈ R H ∗ W ∗ C x \in R^{H*W*C} x∈RH∗W∗C,reshape成为 N = H W / P 2 N=HW/P^2 N=HW/P2个patch, x p ∈ R N ∗ ( P 2 C ) x^p\in\mathbb{R}^{N*(P^2C)} xp∈RN∗(P2C),C为通道数。在该实验中,split 224 × 224 image into a 14 × 14 grid of image patches, where each patch is 16 × 16.
  2. Visual Token,直接将图像tokenize为 z = [ z 1 , . . . z N ] ∈ V h ∗ w z=[z_1,...z_N]\in \mathbb{V}^{h*w} z=[z1,...zN]∈Vh∗w,tokenizer为训练好的discrete variational autoencoder (dVAE),该自编码器包括encoder和decoder两部分,encoder负责将图像输入映射到视觉词表,decoder负责根据encoder的结果重建输入。在本文中仅需要使用训练好的encoder部分作为tokenizer以及对应词表。词表大小为8192
  3. Backbone Network: Image Transformer,在输入前加入special token [S]。
  4. Pre-Training BEIT: Masked Image Modeling(MIM) 。随机mask40%的patches,masked位置由[M] token替代。
    训练目标为感觉masked patch预测相应位置的visual token:
    • blockwise masking,类似于bert中的n gram mask,先随机生成块大小,再选定纵横比 :

实验

  1. 参数设置:ImageNet-1K,1.2M图像。12-layer Transformer with 768 hidden size, and 12 attention heads,intermediate size of feed-forward networks is 3072,16 × 16 input patch size,视觉词表8192. 图像处理包括随机调整大小的裁剪,水平翻转,颜色抖动。2k batch size,800epoch。500k training steps take about five days using 16 Nvidia Telsa V100 32GB GPU cards。
  2. 下游任务微调:
    • 在图像分类任务上,加入一个简单的线性分类器作为任务层,使用average pooling作为最终表示过softmax。
    • 在语义分割上,引入几个反卷积层
    • Intermediate fine-tuning,进一步进行beit的微调应用于下游任务
  3. 主要对比实验,384为输入图像大小
  4. 收敛实验,BEiT收敛速度更快
  5. 语义分割实验
  6. 消融实验,预测visual tokem最重要
  7. 可视化结果
相关推荐
李元豪11 分钟前
【行云流水AI笔记】根据上面泳道图,请问如果加入强化学习,在哪些模块添加比较好,返回添加后的泳道图。
人工智能·笔记
2501_9153743521 分钟前
LangChain开发智能问答(RAG)系统实战教程:从零构建知识驱动型AI助手
人工智能·langchain
AI设计小站34 分钟前
AI 工具打造专业级 PPT 配图:从文字到视觉的高效转化指南
人工智能·信息可视化·powerpoint
新知图书1 小时前
OpenCV图像金字塔
人工智能·opencv·计算机视觉
Eric.Lee20211 小时前
数据集-目标检测系列- 狮子 数据集 lion >> DataBall
人工智能·目标检测·目标跟踪
yanmengying1 小时前
目标检测yolo算法
人工智能·yolo·目标检测
艾醒(AiXing-w)1 小时前
玩转计算机视觉——按照配置部署paddleOCR(英伟达环境与昇腾300IDUO环境)
人工智能·计算机视觉
张较瘦_1 小时前
[论文阅读] 人工智能 | Gen-n-Val:利用代理技术革新计算机视觉数据生成
论文阅读·人工智能·计算机视觉
路溪非溪1 小时前
AI应用:计算机视觉相关技术总结
人工智能·计算机视觉
老周聊大模型1 小时前
解剖Transformers库:从AutoClass设计到FlashAttention-2的工程实现
人工智能