论文辅导 | 基于贝叶斯优化LSTM的锂电池健康状态评估方法

辅导文章

模型描述

在传统的 LSTM 神经网络中,超参数的取值对模型性能有很大影响,但人工调参很难得到最优解。 因此,本文加入了 BO 来迭代出最优超参数。 在利用LSTM 神经网络评估锂电池 SoH 的基础上,通过 BO来提高评估的精确度。

预测效果

相关推荐
恒点虚拟仿真43 分钟前
人工智能+虚拟仿真,助推医学检查技术理论与实践结合
人工智能·ai·虚拟仿真·虚拟仿真实验·人工智能+虚拟仿真·医学检查虚拟仿真
cver1231 小时前
垃圾分类检测数据集-15,000 张图片 智能垃圾分类 回收站与环保设施自动化 公共区域清洁监测 环保机器人 水域与自然环境垃圾监测
人工智能·计算机视觉·分类·数据挖掘·机器人·自动化·智慧城市
paid槮1 小时前
机器学习处理文本数据
人工智能·机器学习·easyui
陈敬雷-充电了么-CEO兼CTO1 小时前
OpenAI开源大模型 GPT-OSS 开放权重语言模型解析:技术特性、部署应用及产业影响
人工智能·gpt·ai·语言模型·自然语言处理·chatgpt·大模型
桃源学社(接毕设)1 小时前
基于Django珠宝购物系统设计与实现(LW+源码+讲解+部署)
人工智能·后端·python·django·毕业设计
鹿导的通天塔1 小时前
高级RAG 00:检索增强生成(RAG)简介
人工智能·后端
计算机sci论文精选1 小时前
CVPR 2025丨机器人如何做看懂世界
人工智能·深度学习·机器学习·机器人·github·人机交互·cvpr
Swaggy T2 小时前
自动驾驶决策算法 —— 有限状态机 FSM
linux·人工智能·算法·机器学习·自动驾驶
雪可问春风2 小时前
YOLOv8 训练报错:PyTorch 2.6+ 模型加载兼容性问题解决
人工智能·pytorch·yolo
神齐的小马2 小时前
机器学习 [白板推导](九)[变分推断]
人工智能·机器学习