论文辅导 | 基于贝叶斯优化LSTM的锂电池健康状态评估方法

辅导文章

模型描述

在传统的 LSTM 神经网络中,超参数的取值对模型性能有很大影响,但人工调参很难得到最优解。 因此,本文加入了 BO 来迭代出最优超参数。 在利用LSTM 神经网络评估锂电池 SoH 的基础上,通过 BO来提高评估的精确度。

预测效果

相关推荐
乌旭32 分钟前
量子计算与GPU的异构加速:基于CUDA Quantum的混合编程实践
人工智能·pytorch·分布式·深度学习·ai·gpu算力·量子计算
deephub2 小时前
CLIMB自举框架:基于语义聚类的迭代数据混合优化及其在LLM预训练中的应用
人工智能·深度学习·大语言模型·聚类
思通数科AI全行业智能NLP系统3 小时前
AI视频技术赋能幼儿园安全——教师离岗报警系统的智慧守护
大数据·人工智能·安全·目标检测·目标跟踪·自然语言处理·ocr
struggle20254 小时前
deepseek-cli开源的强大命令行界面,用于与 DeepSeek 的 AI 模型进行交互
人工智能·开源·自动化·交互·deepseek
ocr_sinosecu15 小时前
OCR定制识别:解锁文字识别的无限可能
人工智能·机器学习·ocr
奋斗者1号5 小时前
分类数据处理全解析:从独热编码到高维特征优化
人工智能·机器学习·分类
契合qht53_shine5 小时前
深度学习 视觉处理(CNN) day_02
人工智能·深度学习·cnn
就叫飞六吧5 小时前
如何判断你的PyTorch是GPU版还是CPU版?
人工智能·pytorch·python
zsffuture5 小时前
opencv 读取3G大图失败,又不想重新编译opencv ,可以如下操作
人工智能·opencv·webpack
AntBlack6 小时前
别说了别说了 ,Trae 已经在不停优化迭代了
前端·人工智能·后端