Andrew Ng 吴恩达的深度学习课程作业 COURSE 4 Week 03 Car detection (TF2)

0 - Package version
python 复制代码
Package                       Version
----------------------------- --------------
imageio                       2.33.1
keras                         2.6.0
Keras-Preprocessing           1.1.2
matplotlib                    3.7.2
numpy                         1.21.6
tensorflow                    2.6.0
1 - Import packages
python 复制代码
import os

import imageio
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from keras import backend as K
from keras.models import load_model
from yad2k.models.keras_yolo import yolo_boxes_to_corners, yolo_head
from yolo_utils import (
    draw_boxes,
    generate_colors,
    preprocess_image,
    read_anchors,
    read_classes,
    scale_boxes,
)
2 - Filtering with a threshold on class scores
python 复制代码
# GRADED FUNCTION: yolo_filter_boxes


def yolo_filter_boxes(box_confidence, boxes, box_class_probs, threshold=0.6):
    """Filters YOLO boxes by thresholding on object and class confidence.

    Arguments:
    box_confidence -- tensor of shape (19, 19, 5, 1)
    boxes -- tensor of shape (19, 19, 5, 4)
    box_class_probs -- tensor of shape (19, 19, 5, 80)
    threshold -- real value, if [ highest class probability score < threshold], then get rid of the corresponding box

    Returns:
    scores -- tensor of shape (None,), containing the class probability score for selected boxes
    boxes -- tensor of shape (None, 4), containing (b_x, b_y, b_h, b_w) coordinates of selected boxes
    classes -- tensor of shape (None,), containing the index of the class detected by the selected boxes

    Note: "None" is here because you don't know the exact number of selected boxes, as it depends on the threshold.
    For example, the actual output size of scores would be (10,) if there are 10 boxes.
    """

    # Step 1: Compute box scores
    ### START CODE HERE ### (≈ 1 line)
    box_scores = box_confidence * box_class_probs
    ### END CODE HERE ###

    # Step 2: Find the box_classes thanks to the max box_scores, keep track of the corresponding score
    ### START CODE HERE ### (≈ 2 lines)
    box_classes = K.argmax(box_scores, axis=-1)
    box_class_scores = K.max(box_scores, axis=-1, keepdims=False)
    ### END CODE HERE ###

    # Step 3: Create a filtering mask based on "box_class_scores" by using "threshold". The mask should have the
    # same dimension as box_class_scores, and be True for the boxes you want to keep (with probability >= threshold)
    ### START CODE HERE ### (≈ 1 line)
    filtering_mask = box_class_scores > threshold
    ### END CODE HERE ###

    # Step 4: Apply the mask to scores, boxes and classes
    ### START CODE HERE ### (≈ 3 lines)
    scores = tf.boolean_mask(box_class_scores, filtering_mask)
    boxes = tf.boolean_mask(boxes, filtering_mask)
    classes = tf.boolean_mask(box_classes, filtering_mask)
    ### END CODE HERE ###

    return scores, boxes, classes
python 复制代码
box_confidence = tf.random.normal([19, 19, 5, 1], mean=1, stddev=4, seed=1)
boxes = tf.random.normal([19, 19, 5, 4], mean=1, stddev=4, seed=1)
box_class_probs = tf.random.normal([19, 19, 5, 80], mean=1, stddev=4, seed=1)
scores, boxes, classes = yolo_filter_boxes(
    box_confidence, boxes, box_class_probs, threshold=0.5
)
print("scores[2] = " + str(scores[2].numpy()))
print("boxes[2] = " + str(boxes[2].numpy()))
print("classes[2] = " + str(classes[2].numpy()))
print("scores.shape = " + str(scores.shape))
print("boxes.shape = " + str(boxes.shape))
print("classes.shape = " + str(classes.shape))

'''
Output 输出
scores[2] = 16.064978
boxes[2] = [ 1.0273384 -2.1178942  4.8872733 -4.0143332]
classes[2] = 78
scores.shape = (1786,)
boxes.shape = (1786, 4)
classes.shape = (1786,)
'''
3 - Non-max suppression
python 复制代码
# GRADED FUNCTION: iou


def iou(box1, box2):
    """Implement the intersection over union (IoU) between box1 and box2

    Arguments:
    box1 -- first box, list object with coordinates (x1, y1, x2, y2)
    box2 -- second box, list object with coordinates (x1, y1, x2, y2)
    """

    # Calculate the (y1, x1, y2, x2) coordinates of the intersection of box1 and box2. Calculate its Area.
    ### START CODE HERE ### (≈ 5 lines)
    xi1 = max(box1[0], box2[0])
    yi1 = max(box1[1], box2[1])
    xi2 = min(box1[2], box2[2])
    yi2 = min(box1[3], box2[3])
    inter_area = (xi2 - xi1) * (yi2 - yi1)
    ### END CODE HERE ###

    # Calculate the Union area by using Formula: Union(A,B) = A + B - Inter(A,B)
    ### START CODE HERE ### (≈ 3 lines)
    box1_area = (box1[2] - box1[0]) * (box1[3] - box1[1])
    box2_area = (box2[2] - box2[0]) * (box2[3] - box2[1])
    union_area = box1_area + box2_area - inter_area
    ### END CODE HERE ###

    # compute the IoU
    ### START CODE HERE ### (≈ 1 line)
    iou = inter_area / union_area
    ### END CODE HERE ###

    return iou
python 复制代码
box1 = (2, 1, 4, 3)
box2 = (1, 2, 3, 4)
print("iou = " + str(iou(box1, box2)))

'''
Output 输出
iou = 0.14285714285714285
'''
python 复制代码
# GRADED FUNCTION: yolo_non_max_suppression


def yolo_non_max_suppression(scores, boxes, classes, max_boxes=10, iou_threshold=0.5):
    """
    Applies Non-max suppression (NMS) to set of boxes

    Arguments:
    scores -- tensor of shape (None,), output of yolo_filter_boxes()
    boxes -- tensor of shape (None, 4), output of yolo_filter_boxes() that have been scaled to the image size (see later)
    classes -- tensor of shape (None,), output of yolo_filter_boxes()
    max_boxes -- integer, maximum number of predicted boxes you'd like
    iou_threshold -- real value, "intersection over union" threshold used for NMS filtering

    Returns:
    scores -- tensor of shape (, None), predicted score for each box
    boxes -- tensor of shape (4, None), predicted box coordinates
    classes -- tensor of shape (, None), predicted class for each box

    Note: The "None" dimension of the output tensors has obviously to be less than max_boxes. Note also that this
    function will transpose the shapes of scores, boxes, classes. This is made for convenience.
    """

    max_boxes_tensor = tf.Variable(
        max_boxes, dtype="int32", name="max_boxes_tensor"
    )  # initialize variable max_boxes_tensor

    # Use tf.image.non_max_suppression() to get the list of indices corresponding to boxes you keep
    ### START CODE HERE ### (≈ 1 line)
    nms_indices = tf.image.non_max_suppression(
        boxes, scores, max_boxes, iou_threshold, name=None
    )
    ### END CODE HERE ###

    # Use K.gather() to select only nms_indices from scores, boxes and classes
    ### START CODE HERE ### (≈ 3 lines)
    scores = K.gather(scores, nms_indices)
    boxes = K.gather(boxes, nms_indices)
    classes = K.gather(classes, nms_indices)
    ### END CODE HERE ###

    return scores, boxes, classes
python 复制代码
scores = tf.random.normal(
    [
        54,
    ],
    mean=1,
    stddev=4,
    seed=1,
)
boxes = tf.random.normal([54, 4], mean=1, stddev=4, seed=1)
classes = tf.random.normal(
    [
        54,
    ],
    mean=1,
    stddev=4,
    seed=1,
)
scores, boxes, classes = yolo_non_max_suppression(scores, boxes, classes)
print("scores[2] = " + str(scores[2].numpy()))
print("boxes[2] = " + str(boxes[2].numpy()))
print("classes[2] = " + str(classes[2].numpy()))
print("scores.shape = " + str(scores.shape))
print("boxes.shape = " + str(boxes.shape))
print("classes.shape = " + str(classes.shape))

'''
Output 输出
scores[2] = 7.830904
boxes[2] = [ 2.2589586   0.29471445 -2.2524776   0.87786186]
classes[2] = -0.8636918
scores.shape = (10,)
boxes.shape = (10, 4)
classes.shape = (10,)
'''
4 - Wrapping up the filtering
python 复制代码
# GRADED FUNCTION: yolo_eval


def yolo_eval(
    yolo_outputs,
    image_shape=(720.0, 1280.0),
    max_boxes=10,
    score_threshold=0.6,
    iou_threshold=0.5,
):
    """
    Converts the output of YOLO encoding (a lot of boxes) to your predicted boxes along with their scores, box coordinates and classes.

    Arguments:
    yolo_outputs -- output of the encoding model (for image_shape of (608, 608, 3)), contains 4 tensors:
                    box_confidence: tensor of shape (None, 19, 19, 5, 1)
                    box_xy: tensor of shape (None, 19, 19, 5, 2)
                    box_wh: tensor of shape (None, 19, 19, 5, 2)
                    box_class_probs: tensor of shape (None, 19, 19, 5, 80)
    image_shape -- tensor of shape (2,) containing the input shape, in this notebook we use (608., 608.) (has to be float32 dtype)
    max_boxes -- integer, maximum number of predicted boxes you'd like
    score_threshold -- real value, if [ highest class probability score < threshold], then get rid of the corresponding box
    iou_threshold -- real value, "intersection over union" threshold used for NMS filtering

    Returns:
    scores -- tensor of shape (None, ), predicted score for each box
    boxes -- tensor of shape (None, 4), predicted box coordinates
    classes -- tensor of shape (None,), predicted class for each box
    """

    ### START CODE HERE ###

    # Retrieve outputs of the YOLO model (≈1 line)
    box_xy, box_wh, box_confidence, box_class_probs = yolo_outputs

    # Convert boxes to be ready for filtering functions
    boxes = yolo_boxes_to_corners(box_xy, box_wh)

    # Use one of the functions you've implemented to perform Score-filtering with a threshold of score_threshold (≈1 line)
    scores, boxes, classes = yolo_filter_boxes(
        box_confidence, boxes, box_class_probs, score_threshold
    )

    # Scale boxes back to original image shape.
    boxes = scale_boxes(boxes, image_shape)

    # Use one of the functions you've implemented to perform Non-max suppression with a threshold of iou_threshold (≈1 line)
    scores, boxes, classes = yolo_non_max_suppression(
        scores, boxes, classes, max_boxes, iou_threshold
    )

    ### END CODE HERE ###

    return scores, boxes, classes
python 复制代码
yolo_outputs = (
    tf.random.normal([19, 19, 5, 2], mean=1, stddev=4, seed=1),
    tf.random.normal([19, 19, 5, 2], mean=1, stddev=4, seed=1),
    tf.random.normal([19, 19, 5, 1], mean=1, stddev=4, seed=1),
    tf.random.normal([19, 19, 5, 80], mean=1, stddev=4, seed=1),
)
scores, boxes, classes = yolo_eval(yolo_outputs)
print("scores[2] = " + str(scores[2].numpy()))
print("boxes[2] = " + str(boxes[2].numpy()))
print("classes[2] = " + str(classes[2].numpy()))
print("scores.shape = " + str(scores.shape))
print("boxes.shape = " + str(boxes.shape))
print("classes.shape = " + str(classes.shape))

'''
Output 输出
scores[2] = 131.62581
boxes[2] = [5489.0874 7872.257  4824.162  8717.479 ]
classes[2] = 29
scores.shape = (10,)
boxes.shape = (10, 4)
classes.shape = (10,)
'''
5 - Defining classes, anchors and image shape.
python 复制代码
class_names = read_classes("model_data/coco_classes.txt")
anchors = read_anchors("model_data/yolo_anchors.txt")
image_shape = (720.0, 1280.0)
6 - Loading a pretrained model
python 复制代码
yolo_model = load_model("model_data/yolo.h5")
bash 复制代码
yolo_model.summary()

下载的文件里没有h5模型的,需要重新生产模型,步骤:

6.1 - 下载预训练的权重:

Linux

bash 复制代码
wget http://pjreddie.com/media/files/yolo.weights

Window
http://pjreddie.com/media/files/yolo.weights

点击上面链接之后自动下载

6.2 - 下载配置文件:

https://github.com/pjreddie/darknet/tree/master/cfg

找到yolov2.cfg下载下来,并改名成yolo.cfg(调用该文件时,使用的名字是这个)。

6.3 - 下载需要脚本

https://github.com/allanzelener/YAD2K

点击下载zip。

当然你使用git命令下载下来也可以。

6.4 - 准备工作

复制或剪切yolo.weights和yolo.cfg以及yad2k.py三个文件,以及一个文件夹yad2k到同一文件夹中。

注意文件夹吴恩达提供的作业里已经有yad2k文件夹,所有windows会提示你是否替换原有文件,点击替换。

6.5 - 打开Anaconda Prompt

在prompt中运行command

bash 复制代码
(tensorflow) C:\Users\>python yad2k.py yolo.cfg yolo.weights model_data/yolo.h5
7 - Run the graph on an image
bash 复制代码
def predict(image_file):
    """
    Runs the graph stored in "sess" to predict boxes for "image_file". Prints and plots the preditions.

    Arguments:
    sess -- your tensorflow/Keras session containing the YOLO graph
    image_file -- name of an image stored in the "images" folder.

    Returns:
    out_scores -- tensor of shape (None, ), scores of the predicted boxes
    out_boxes -- tensor of shape (None, 4), coordinates of the predicted boxes
    out_classes -- tensor of shape (None, ), class index of the predicted boxes

    Note: "None" actually represents the number of predicted boxes, it varies between 0 and max_boxes.
    """

    # Preprocess your image
    image, image_data = preprocess_image(
        "images/" + image_file, model_image_size=(608, 608)
    )

    # Run the session with the correct tensors and choose the correct placeholders in the feed_dict.
    # You'll need to use feed_dict={yolo_model.input: ... , K.learning_phase(): 0})
    ### START CODE HERE ### (≈ 1 line)
    out_scores = yolo_model(image_data, training=False)
    yolo_outputs = yolo_head(out_scores, anchors, len(class_names))
    out_scores, out_boxes, out_classes = yolo_eval(yolo_outputs, image_shape)
    ### END CODE HERE ###

    # Print predictions info
    print("Found {} boxes for {}".format(len(out_boxes), image_file))
    # Generate colors for drawing bounding boxes.
    colors = generate_colors(class_names)
    # Draw bounding boxes on the image file
    draw_boxes(image, out_scores, out_boxes, out_classes, class_names, colors)
    # Save the predicted bounding box on the image
    image.save(os.path.join("out", image_file), quality=90)
    # Display the results in the notebook
    output_image = imageio.imread(os.path.join("out", "test.jpg"))
    plt.imshow(output_image)

    return out_scores, out_boxes, out_classes
python 复制代码
predict("test.jpg")

predict function中使用到了yolo_head,在yad2k/models/keras_yolo.py代码中 line 32 需要修改:

python 复制代码
#return tf.space_to_depth(x, block_size=2) #TF1
return tf.nn.space_to_depth(x, block_size=2) #TF2

predict function中使用到了yolo_units.draw_boxes(),yolo_units.py代码中由于Pillow版本的问题,ImageDraw.textsize() 已弃用,对应需要使用ImageDraw.textbbox()

python 复制代码
def draw_boxes(image, out_scores, out_boxes, out_classes, class_names, colors):
    
    font = ImageFont.truetype(font='font/FiraMono-Medium.otf',size=np.floor(3e-2 * image.size[1] + 0.5).astype('int32'))
    thickness = (image.size[0] + image.size[1]) // 300

    for i, c in reversed(list(enumerate(out_classes))):
        predicted_class = class_names[c]
        box = out_boxes[i]
        score = out_scores[i]

        label = '{} {:.2f}'.format(predicted_class, score)

        draw = ImageDraw.Draw(image)
        #label_size = draw.textlength(label, font)   #Deprecated
        box_size = draw.textbbox((0,0), label, font)
        label_size = [box_size[2] - box_size[0], box_size[3] - box_size[1]]

        top, left, bottom, right = box
        top = max(0, np.floor(top + 0.5).astype('int32'))
        left = max(0, np.floor(left + 0.5).astype('int32'))
        bottom = min(image.size[1], np.floor(bottom + 0.5).astype('int32'))
        right = min(image.size[0], np.floor(right + 0.5).astype('int32'))
        print(label, (left, top), (right, bottom))

        if top - label_size[1] >= 0:
            text_origin = np.array([left, top - label_size[1]])
        else:
            text_origin = np.array([left, top + 1])

        # My kingdom for a good redistributable image drawing library.
        for i in range(thickness):
            draw.rectangle([left + i, top + i, right - i, bottom - i], outline=colors[c])
        draw.rectangle([tuple(text_origin), tuple(text_origin + label_size)], fill=colors[c])
        draw.text(text_origin, label, fill=(0, 0, 0), font=font)
        del draw
相关推荐
B站计算机毕业设计超人5 分钟前
计算机毕业设计PySpark+Hadoop中国城市交通分析与预测 Python交通预测 Python交通可视化 客流量预测 交通大数据 机器学习 深度学习
大数据·人工智能·爬虫·python·机器学习·课程设计·数据可视化
学术头条10 分钟前
清华、智谱团队:探索 RLHF 的 scaling laws
人工智能·深度学习·算法·机器学习·语言模型·计算语言学
18号房客14 分钟前
一个简单的机器学习实战例程,使用Scikit-Learn库来完成一个常见的分类任务——**鸢尾花数据集(Iris Dataset)**的分类
人工智能·深度学习·神经网络·机器学习·语言模型·自然语言处理·sklearn
feifeikon17 分钟前
机器学习DAY3 : 线性回归与最小二乘法与sklearn实现 (线性回归完)
人工智能·机器学习·线性回归
游客52020 分钟前
opencv中的常用的100个API
图像处理·人工智能·python·opencv·计算机视觉
古希腊掌管学习的神21 分钟前
[机器学习]sklearn入门指南(2)
人工智能·机器学习·sklearn
Ven%31 分钟前
如何在防火墙上指定ip访问服务器上任何端口呢
linux·服务器·网络·深度学习·tcp/ip
凡人的AI工具箱1 小时前
每天40分玩转Django:Django国际化
数据库·人工智能·后端·python·django·sqlite
IT猿手1 小时前
最新高性能多目标优化算法:多目标麋鹿优化算法(MOEHO)求解TP1-TP10及工程应用---盘式制动器设计,提供完整MATLAB代码
开发语言·深度学习·算法·机器学习·matlab·多目标算法
咸鱼桨1 小时前
《庐山派从入门到...》PWM板载蜂鸣器
人工智能·windows·python·k230·庐山派