opencv识别颜色

  1. 导入必要的库:首先,需要导入 OpenCV 库和其他可能用到的库,如 NumPy。
  2. 加载图像 :使用cv2.imread函数加载包含多种颜色的图像。
  3. 定义颜色范围:在 HSV 颜色空间中定义要识别的颜色范围。可以使用颜色选择器工具来确定所需颜色的 HSV 值范围。
  4. 颜色识别函数:创建一个颜色识别函数,用于在图像中识别指定颜色的区域。
  5. 图像处理:在颜色识别函数中,进行图像处理操作,如转换颜色空间、二值化、膨胀、检测轮廓等。
  6. 绘制轮廓和结果:根据识别到的颜色区域,绘制轮廓、框选目标,并显示结果。

以下是一个使用 OpenCV 进行颜色识别的示例代码

import cv2
import numpy as np

def color_identify(image, color_range):
    # 转换为 HSV 颜色模型
    hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
    # 二值化处理,表示 HSV 中颜色的范围
    mask = cv2.inRange(hsv, color_range[0], color_range[1])
    # 膨胀操作
    kernel = np.ones((5, 5), dtype=np.uint8)
    dilate = cv2.dilate(mask, kernel, iterations=1)
    # 检测图像中轮廓的函数
    cnts, hierarchy = cv2.findContours(dilate, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
    # 判断是否有轮廓
    if len(cnts) == 0:
        # 没有即显示原图
        cv2.imshow("color_identify", image)
        return
    # 返回最大面积的轮廓
    max_cnt = max(cnts, key=cv2.contourArea)
    # 用于在图像中绘制轮廓
    cv2.drawContours(image, max_cnt, -1, (0, 0, 255), 2)
    # 用于计算一个点集的最小边界矩形
    (x, y, w, h) = cv2.boundingRect(max_cnt)
    # 将目标框起来
    cv2.rectangle(image, (x, y), (x+w, y+h), (0, 0, 255), 3)
    # 在目标的中间画一个小圈
    cv2.circle(image, (x + (w//2), y + (h//2)), 6, (0, 0, 255), 2)
    # 打印出目标中点的坐标
    print("x + w:", x + (w//2), "y + h:", y + (h//2))
    cv2.imshow("color_identify", image)

if __name__ == "__main__":
    # 打开摄像头
    cap = cv2.VideoCapture(0)
    # 设置摄像头参数
    cap.set(cv2.CAP_PROP_FRAME_WIDTH, 480)
    cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 480)
    cap.set(cv2.CAP_PROP_FPS, 100)

    while True:
        # 循环读取每一帧
        flag, frame = cap.read()
        # 将图像翻转过来
        frame = cv2.flip(frame, 1)
        # 如果读取失败
        if not flag:
            print("Camera error!")
            break
        # 调用颜色识别函数
        color_identify(frame, [(0, 150, 150), (10, 255, 255)])  # 识别红色

        # 等待用户按下'q'键,如果按下则退出循环
        sun = cv2.waitKey(1)
        if sun == ord('q'):
            break

    # 关闭摄像头,解除程序占用摄像头
    cap.release()
    # cv2 把所有打开的窗口关闭掉
    cv2.destroyAllWindows()

定义了一个color_identify函数,它接受图像和颜色范围作为参数。在函数内部,首先将图像转换为 HSV 颜色空间,然后使用cv2.inRange函数进行二值化处理,得到指定颜色范围内的像素。接下来,进行膨胀操作和轮廓检测,找到最大面积的轮廓,并绘制轮廓、框选目标和显示结果。

if __name__ == "__main__":部分,打开摄像头并设置参数,然后在循环中读取每一帧图像,调用color_identify函数进行颜色识别。用户按下q键时,退出循环并关闭摄像头。

请注意,这只是一个简单的颜色识别示例代码,实际应用中可能需要根据具体情况进行更多的图像处理和优化。此外,颜色范围的选择可能需要根据实际图像进行调整。

相关推荐
这个男人是小帅26 分钟前
【GAT】 代码详解 (1) 运行方法【pytorch】可运行版本
人工智能·pytorch·python·深度学习·分类
__基本操作__28 分钟前
边缘提取函数 [OPENCV--2]
人工智能·opencv·计算机视觉
这是一个图像30 分钟前
从opencv-python入门opencv--图像处理之图像滤波
图像处理·opencv·计算机视觉·中值滤波·高斯滤波·双边滤波·图像滤波
Doctor老王32 分钟前
TR3:Pytorch复现Transformer
人工智能·pytorch·transformer
热爱生活的五柒32 分钟前
pytorch中数据和模型都要部署在cuda上面
人工智能·pytorch·深度学习
HyperAI超神经2 小时前
【TVM 教程】使用 Tensorize 来利用硬件内联函数
人工智能·深度学习·自然语言处理·tvm·计算机技术·编程开发·编译框架
扫地的小何尚4 小时前
NVIDIA RTX 系统上使用 llama.cpp 加速 LLM
人工智能·aigc·llama·gpu·nvidia·cuda·英伟达
埃菲尔铁塔_CV算法7 小时前
深度学习神经网络创新点方向
人工智能·深度学习·神经网络
艾思科蓝-何老师【H8053】7 小时前
【ACM出版】第四届信号处理与通信技术国际学术会议(SPCT 2024)
人工智能·信号处理·论文发表·香港中文大学
weixin_452600697 小时前
《青牛科技 GC6125:驱动芯片中的璀璨之星,点亮 IPcamera 和云台控制(替代 BU24025/ROHM)》
人工智能·科技·单片机·嵌入式硬件·新能源充电桩·智能充电枪