nn.Embedding 根据索引生成的向量有权重吗

import torch

import torch.nn as nn

假设有一个大小为 10x3 的 Embedding 层,其中有 10 个单词,每个单词用一个长度为 3 的向量表示

num_words = 10

embedding_dim = 3

创建 Embedding 层

embedding_layer = nn.Embedding(num_words, embedding_dim)

print(embedding_layer.weight)

embedded_vectors = embedding_layer(torch.LongTensor([4]))

print(embedded_vectors)

embedded_vectors = embedding_layer(torch.LongTensor([5]))

print(embedded_vectors)

embedded_vectors = embedding_layer(torch.LongTensor([6]))

print(embedded_vectors)

nn.Embedding层单词转向量实测

1.nn.Embedding创建对象embedding_layer

2.可以看到embedding_layer创建完成,其属性weight已经有值了

3.embedding_layer方法传入分别torch.LongTensor([4]),torch.LongTensor([5]),(torch.LongTensor([6])生成的结果就是根据索引值去weight里取值。

打破猜测:

1.原以为embedding_layer里进行的一个乘法,传参*随机权重,如embedded_vectors =torch.LongTensor([4])*W,实际不是,没有乘法

2.实际是nn.Embedding(num_words, embedding_dim)根据参数已经随机生成了所有的向量,之后仅需根据索引取值

原始猜测:

1.由于程序每次重启embedding_layer.weight生成的参数随机,为供断点续训和预测用,这些参数不能每次都随机生成,所以这些应该是要保存在模型中。即断点续训或预测时,embedding层的向量不应是随机生成了,而是读取模型文件中存储的模型参数。

2.embedding_layer.weight参与梯度更新,一开始以为此处没有

3.一开始根据各种信息判断nn.Embedding的内部机制是,或许有一个随机参数,乘以输入单词索引,得到嵌入向量,并且这个参数不参加更新,潜意识是参数不保存。

复制代码
1.为什么有或许有一个随机参数,乘以输入单词索引,得到嵌入向量这样的理解?
	因为看着是传入了索引,得到了一个随机向量,合理猜测应该是有个随即参数与传参相乘。
	所以这里第一步的猜测就错了。
	首先这个参数的确是有的,机制的实际是随机生成所有的可能的索引的向量,供直接取用。这里参数即嵌入向量

2.这个参数不参加更新?
	这种不参与更新的参数,模型会保存吗?猜测应该不会,如果不会,那每次重启的得到的嵌入向量都变了,怎么供续训和预测用?

对于transformer/bert,网络上的确对nn.Embedding这一步骤的机制讲解不够清晰,不知道嵌入向量是怎么得出的,不知道其中是否有需要训练的参数。

嵌入参数不参加更新这说法主要是来自李宏毅讲的注意力机制那块的误解,说是除了wq,wk,wv参数参与训练,没有别的参数了。这就和续训预测产生了极强的的矛盾,难以判断。

当你创建 nn.Embedding 层时,PyTorch 会随机初始化权重。这些权重在训练过程中会通过反向传播进行更新,以拟合模型的输入和输出数据,确保模型能够更好地进行预测或分类任务。

相关推荐
smile_Iris16 小时前
Day 40 复习日
人工智能·深度学习·机器学习
深度学习实战训练营16 小时前
TransUNet:Transformer 成为医学图像分割的强大编码器,Transformer 编码器 + U-Net 解码器-k学长深度学习专栏
人工智能·深度学习·transformer
火山kim16 小时前
经典论文研读报告:DAGGER (Dataset Aggregation)
人工智能·深度学习·机器学习
Coding茶水间17 小时前
基于深度学习的水果检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉
小程故事多_8017 小时前
开源界核弹级输出!蚂蚁 Agentar-Scale-SQL 凭 “编排式扩展” 技术,成为 Text-to-SQL 天花板
数据库·人工智能·sql·开源·aigc·embedding
studytosky17 小时前
深度学习理论与实战:反向传播、参数初始化与优化算法全解析
人工智能·python·深度学习·算法·分类·matplotlib
IT老兵202519 小时前
PyTorch DDP多GPU训练实践问题总结
人工智能·pytorch·python·分布式训练·ddp
@鱼香肉丝没有鱼20 小时前
Transformer底层原理—位置编码
人工智能·深度学习·transformer·位置编码
深度学习实战训练营20 小时前
HRNet:深度高分辨率表示学习用于人体姿态估计-k学长深度学习专栏
人工智能·深度学习
架构师李哲20 小时前
让智能家居“听懂人话”:我用4B模型+万条数据,教会了它理解复杂指令
深度学习·aigc