2-11 基于matlab的BP-Adaboost的强分类器分类预测

基于matlab的BP-Adaboost的强分类器分类预测,Adaboost是一种迭代分类算法,其在同一训练集采用不同方法训练不同分类器(弱分类器),并根据弱分类器的误差分配不同权重,然后将这些弱分类器组合成一个更强的最终分类器(强分类器),并一直迭代,直到分类的错误率达到之前设定的阈值或者迭代次数达到设定最大迭代次数。程序已调通,可直接运行。

2-11 BP-Adaboost 分类器分类预测 - 小红书 (xiaohongshu.com)

相关推荐
资讯全球1 小时前
2025年智慧差旅平台推荐
人工智能
en-route1 小时前
从零开始学神经网络——LSTM(长短期记忆网络)
人工智能·深度学习·lstm
可编程芯片开发1 小时前
基于CMAC神经网络的PID复合控制器matlab性能仿真
神经网络·matlab·pid·cmac-pid·cmac小脑网络
视觉语言导航2 小时前
CVPR-2025 | 具身导航指令高效生成!MAPInstructor:基于场景图的导航指令生成Prompt调整策略
人工智能·机器人·具身智能
wanhengidc2 小时前
云手机与人工智能之间的关系
人工智能·智能手机
Sic_MOS_780168242 小时前
超高密度2kW GaN基低压电机驱动器的设计
人工智能·经验分享·汽车·集成测试·硬件工程·能源
老坛程序员2 小时前
抓包解析MCP协议:基于JSON-RPC的MCP host与MCP server的交互
人工智能·网络协议·rpc·json·交互
努力毕业的小土博^_^2 小时前
【深度学习|学习笔记】详细讲解一下 深度学习训练过程中 为什么 Momentum 可以加速训练?
人工智能·笔记·深度学习·学习·momentum
飞哥数智坊2 小时前
DeepSeek 节前突袭发布 V3.2-Exp:长文本推理成本直降75%!
人工智能·deepseek