动手学深度学习(Pytorch版)代码实践 -卷积神经网络-26网络中的网络NiN

26网络中的网络NiN

python 复制代码
import torch
from torch import nn
import liliPytorch as lp
import matplotlib.pyplot as plt

# 定义一个NiN块
def nin_block(in_channels, out_channels, kernel_size, strides, padding):
    return nn.Sequential(
        # 传统的卷积层
        nn.Conv2d(in_channels, out_channels, kernel_size, strides, padding),
        nn.ReLU(),  # 激活函数ReLU
        # 1x1卷积层
        nn.Conv2d(out_channels, out_channels, kernel_size=1),
        nn.ReLU(),  
        # 另一个1x1卷积层
        nn.Conv2d(out_channels, out_channels, kernel_size=1),
        nn.ReLU()   
    )

# 设置dropout的概率
dropout = 0.5 

# 定义NiN模型
net = nn.Sequential(
    # 第一个NiN块,输入通道数为1,输出通道数为96
    nin_block(1, 96, kernel_size=11, strides=4, padding=0),
    # 最大池化层
    nn.MaxPool2d(kernel_size=3, stride=2),
    # 第二个NiN块,输入通道数为96,输出通道数为256
    nin_block(96, 256, kernel_size=5, strides=1, padding=2),
    # 最大池化层
    nn.MaxPool2d(kernel_size=3, stride=2),
    # 第三个NiN块,输入通道数为256,输出通道数为384
    nin_block(256, 384, kernel_size=3, strides=1, padding=1),
    # 最大池化层
    nn.MaxPool2d(kernel_size=3, stride=2),
    # Dropout层,用于防止过拟合
    nn.Dropout(dropout),

    # 最后一个NiN块,输入通道数为384,输出通道数为10
    nin_block(384, 10, kernel_size=3, strides=1, padding=1),
    # 全局平均池化层,将特征图的每个通道的空间维度调整为1x1
    nn.AdaptiveAvgPool2d((1, 1)),
    nn.Flatten()
)

X = torch.rand(size=(1, 1, 224, 224))
for layer in net:
    X = layer(X)
    print(layer.__class__.__name__,'output shape:\t', X.shape)
"""
Sequential output shape:         torch.Size([1, 96, 54, 54])
MaxPool2d output shape:  torch.Size([1, 96, 26, 26])
Sequential output shape:         torch.Size([1, 256, 26, 26])
MaxPool2d output shape:  torch.Size([1, 256, 12, 12])
Sequential output shape:         torch.Size([1, 384, 12, 12])
MaxPool2d output shape:  torch.Size([1, 384, 5, 5])
Dropout output shape:    torch.Size([1, 384, 5, 5])
Sequential output shape:         torch.Size([1, 10, 5, 5])
AdaptiveAvgPool2d output shape:  torch.Size([1, 10, 1, 1])
Flatten output shape:    torch.Size([1, 10])
"""

lr, num_epochs, batch_size = 0.1, 10, 128
train_iter, test_iter = lp.loda_data_fashion_mnist(batch_size, resize=224)
lp.train_ch6(net, train_iter, test_iter, num_epochs, lr, lp.try_gpu())
plt.show()  # 显示绘图
# loss 0.342, train acc 0.873, test acc 0.871
# 1395.1 examples/sec on cuda:0

运行结果:

相关推荐
阿豪Jeremy11 分钟前
LlamaFactory微调Qwen3-0.6B大模型实验整理——调一个人物领域专属的模型
人工智能·深度学习·机器学习
赤狐先生33 分钟前
第三步--根据python基础语法完成一个简单的深度学习模拟
开发语言·python·深度学习
cskywit34 分钟前
[Nature 2026]AFLoc:一种用于通用无标注病理局部定位的多模态视觉‑语言模型
人工智能·深度学习·语言模型
victory043136 分钟前
pytorch函数使用规律-不必再死记硬背
人工智能·pytorch·python
Hcoco_me44 分钟前
大模型面试题88:cuda core的数量 与 开发算子中实际使用的线程 关系是什么?过量线程会发生什么情况?
人工智能·深度学习·机器学习·chatgpt·职场和发展·机器人
童话名剑1 小时前
RNN类型、语言模型与新序列采样(吴恩达深度学习笔记)
rnn·深度学习·语言模型·rnn结构类型·新序列采样
LDG_AGI1 小时前
【机器学习】深度学习推荐系统(三十一):X For You Feed 全新推荐系统技术架构深度解析
人工智能·深度学习·算法·机器学习·架构·推荐算法
茶栀(*´I`*)1 小时前
PyTorch实战:手机价格区间预测(从64%到91%的模型优化之路)
pytorch·深度学习·神经网络
Yngz_Miao1 小时前
【深度学习】动态交叉熵损失函数Focal Loss
人工智能·深度学习·损失函数·focalloss·动态交叉熵
劈星斩月1 小时前
3Blue1Brown-深度学习之神经网络
人工智能·深度学习·神经网络