动手学深度学习(Pytorch版)代码实践 -卷积神经网络-26网络中的网络NiN

26网络中的网络NiN

python 复制代码
import torch
from torch import nn
import liliPytorch as lp
import matplotlib.pyplot as plt

# 定义一个NiN块
def nin_block(in_channels, out_channels, kernel_size, strides, padding):
    return nn.Sequential(
        # 传统的卷积层
        nn.Conv2d(in_channels, out_channels, kernel_size, strides, padding),
        nn.ReLU(),  # 激活函数ReLU
        # 1x1卷积层
        nn.Conv2d(out_channels, out_channels, kernel_size=1),
        nn.ReLU(),  
        # 另一个1x1卷积层
        nn.Conv2d(out_channels, out_channels, kernel_size=1),
        nn.ReLU()   
    )

# 设置dropout的概率
dropout = 0.5 

# 定义NiN模型
net = nn.Sequential(
    # 第一个NiN块,输入通道数为1,输出通道数为96
    nin_block(1, 96, kernel_size=11, strides=4, padding=0),
    # 最大池化层
    nn.MaxPool2d(kernel_size=3, stride=2),
    # 第二个NiN块,输入通道数为96,输出通道数为256
    nin_block(96, 256, kernel_size=5, strides=1, padding=2),
    # 最大池化层
    nn.MaxPool2d(kernel_size=3, stride=2),
    # 第三个NiN块,输入通道数为256,输出通道数为384
    nin_block(256, 384, kernel_size=3, strides=1, padding=1),
    # 最大池化层
    nn.MaxPool2d(kernel_size=3, stride=2),
    # Dropout层,用于防止过拟合
    nn.Dropout(dropout),

    # 最后一个NiN块,输入通道数为384,输出通道数为10
    nin_block(384, 10, kernel_size=3, strides=1, padding=1),
    # 全局平均池化层,将特征图的每个通道的空间维度调整为1x1
    nn.AdaptiveAvgPool2d((1, 1)),
    nn.Flatten()
)

X = torch.rand(size=(1, 1, 224, 224))
for layer in net:
    X = layer(X)
    print(layer.__class__.__name__,'output shape:\t', X.shape)
"""
Sequential output shape:         torch.Size([1, 96, 54, 54])
MaxPool2d output shape:  torch.Size([1, 96, 26, 26])
Sequential output shape:         torch.Size([1, 256, 26, 26])
MaxPool2d output shape:  torch.Size([1, 256, 12, 12])
Sequential output shape:         torch.Size([1, 384, 12, 12])
MaxPool2d output shape:  torch.Size([1, 384, 5, 5])
Dropout output shape:    torch.Size([1, 384, 5, 5])
Sequential output shape:         torch.Size([1, 10, 5, 5])
AdaptiveAvgPool2d output shape:  torch.Size([1, 10, 1, 1])
Flatten output shape:    torch.Size([1, 10])
"""

lr, num_epochs, batch_size = 0.1, 10, 128
train_iter, test_iter = lp.loda_data_fashion_mnist(batch_size, resize=224)
lp.train_ch6(net, train_iter, test_iter, num_epochs, lr, lp.try_gpu())
plt.show()  # 显示绘图
# loss 0.342, train acc 0.873, test acc 0.871
# 1395.1 examples/sec on cuda:0

运行结果:

相关推荐
START_GAME2 小时前
深度学习Diffusers:用 DiffusionPipeline 实现图像生成
开发语言·python·深度学习
wperseverance5 小时前
Pytorch常用层总结
深度学习·机器学习
小殊小殊5 小时前
【论文笔记】LTX-Video极致速度的视频生成模型
图像处理·人工智能·深度学习
性感博主在线瞎搞5 小时前
【人工智能】神经网络的优化器optimizer(四):Adam自适应动量优化器
人工智能·深度学习·神经网络·性能优化·优化器
StarPrayers.5 小时前
(补)CNN 模型搭建与训练:PyTorch 实战 CIFAR10 任务的应用
人工智能·pytorch·cnn
paid槮6 小时前
深度学习复习汇总
人工智能·深度学习
Light606 小时前
深度学习 × 计算机视觉 × Kaggle(上):从理论殿堂起步 ——像素、特征与模型的进化之路
人工智能·深度学习·计算机视觉·卷积神经网络·transformer·特征学习
机器学习之心7 小时前
未发表,三大创新!OCSSA-VMD-Transformer-Adaboost特征提取+编码器+集成学习轴承故障诊断
深度学习·transformer·集成学习·ocssa-vmd
大千AI助手7 小时前
GELU(高斯误差线性单元)激活函数全面解析
人工智能·深度学习·神经网络·激活函数·正态分布·gelu·高斯误差线性单元
Ai173163915798 小时前
英伟达RTX 6000 Ada 和L40S 对比,哪个更适合做深度学习?
图像处理·人工智能·gpt·深度学习·神经网络·机器学习·电脑