node.js 离线实时语音识别

前言

在node.js实现语音实时转文字。获取麦克风实时语音转文字。

下面是用vosk的效果。注意踩坑要及时评论哦,坑还是挺多的。

在探索后发现本地模型对设备还是有一定要求的,最总无奈采用百度语音识别的方案。

探索结果分享给大家,希望能在项目中提供帮助

deepspeech方案

注意:node 版本14才可运行

npm i deepspeech

npm i node-record-lpcm16

模型资源下载地址

bash 复制代码
英文模型地址
wget https://github.com/mozilla/DeepSpeech/releases/download/v0.9.3/deepspeech-0.9.3-models.pbmm
wget https://github.com/mozilla/DeepSpeech/releases/download/v0.9.3/deepspeech-0.9.3-models.scorer
中文模型地址
wget https://github.com/mozilla/DeepSpeech/releases/download/v0.9.3/deepspeech-0.9.3-models-zh-CN.pbmm
wget https://github.com/mozilla/DeepSpeech/releases/download/v0.9.3/deepspeech-0.9.3-models-zh-CN.scorer
js 复制代码
const DeepSpeech = require("deepspeech");
const record = require("node-record-lpcm16");

const MODEL_PATH = "./deepspeechmodel/deepspeech-0.9.3-models-zh-CN.pbmm"; // 替换为实际模型路径
const SCORER_PATH = "./deepspeechmodel/deepspeech-0.9.3-models-zh-CN.scorer"; // 替换为实际 scorer 文件路径
const SAMPLE_RATE = 16000;

// 加载 DeepSpeech 模型
const model = new DeepSpeech.Model(MODEL_PATH);
model.enableExternalScorer(SCORER_PATH);

const BEAM_WIDTH = 1024;
const LM_ALPHA = 0.75;
const LM_BETA = 1.85;

model.setBeamWidth(BEAM_WIDTH);
model.setScorerAlphaBeta(LM_ALPHA, LM_BETA);

// 开始录音
const mic = record.record({
  sampleRateHertz: SAMPLE_RATE,
  threshold: 0, // 录音的阈值
  verbose: false, // 是否打印详细信息
  recordProgram: "sox", // 或 "arecord" 根据你的操作系统选择
});

mic.stream().on("data", (chunk) => {
  // 将录音数据转换为模型所需的格式(此处假设数据已经是16位整数,如果是其他格式可能需要转换)
  const buffer = Buffer.from(chunk);
  
  // 使用模型的stt方法进行语音识别
  const text = model.stt(buffer);
  
  // 打印识别的文字结果
  if (text) {
    console.log("识别结果:", text);
  } else {
    console.log("未识别到有效语音");
  }
});

mic.stream().on("error", (err) => {
  console.error("Error in Input Stream:", err);
});

mic.stream().on("startComplete", () => {
  console.log("startComplete =========");
});

mic.stream().on("stopComplete", () => {
  console.log("stopComplete =========");
});

mic.start();

process.on("SIGINT", () => {
  mic.stop();
  process.exit();
});

console.log("监听录音,按Ctrl+C停止.");

vosk方案(推荐)

node-record-lpcm16

npm i vosk

中文模型下载地址 https://alphacephei.com/vosk/models

js 复制代码
const fs = require("fs");
const record = require("node-record-lpcm16");
const vosk = require("vosk");

// 设置模型路径
const MODEL_PATH = "./vosk-model-cn-0.22"; // 替换为你的模型路径
const SAMPLE_RATE = 16000;

// 初始化 Vosk 模型
if (!fs.existsSync(MODEL_PATH)) {
  console.error("Model path does not exist.");
  process.exit(1);
}
vosk.setLogLevel(0);
const model = new vosk.Model(MODEL_PATH);

// 处理音频数据
const recognizer = new vosk.Recognizer({
  model: model,
  sampleRate: SAMPLE_RATE,
});

// 开始录音
const mic = record.record({
  sampleRateHertz: SAMPLE_RATE,
  threshold: 0, // 录音的阈值
  verbose: false, // 是否打印详细信息
  recordProgram: "sox", // 或 "arecord" 根据你的操作系统选择
});

mic.stream().on("data", (data) => {
  if (recognizer.acceptWaveform(data)) {
    const result = recognizer.result();
    // console.log("结果", JSON.stringify(result, null, 4));
    console.log("结果", result.text);
  } else {
    const partialResult = recognizer.partialResult();
    // console.log("partial", JSON.stringify(partialResult, null, 4));
    console.log("partial", partialResult.partial);
  }
});

mic.stream().on("error", (err) => {
  console.error("Error in Input Stream: " + err);
});

mic.stream().on("startComplete", () => {
  console.log("Microphone started.");
});

mic.stream().on("stopComplete", () => {
  console.log("Microphone stopped.");
});

mic.start();

// 在进程退出时进行清理
process.on("SIGINT", () => {
  console.log("Exiting...");
  recognizer.free();
  model.free();
  mic.stop();
  process.exit();
});
相关推荐
非门由也9 小时前
《sklearn机器学习——管道和复合估计器》联合特征(FeatureUnion)
人工智能·机器学习·sklearn
l12345sy9 小时前
Day21_【机器学习—决策树(1)—信息增益、信息增益率、基尼系数】
人工智能·决策树·机器学习·信息增益·信息增益率·基尼指数
非门由也9 小时前
《sklearn机器学习——管道和复合估算器》异构数据的列转换器
人工智能·机器学习·sklearn
计算机毕业设计指导10 小时前
基于ResNet50的智能垃圾分类系统
人工智能·分类·数据挖掘
飞哥数智坊10 小时前
终端里用 Claude Code 太难受?我把它接进 TRAE,真香!
人工智能·claude·trae
小王爱学人工智能10 小时前
OpenCV的阈值处理
人工智能·opencv·计算机视觉
新智元11 小时前
刚刚,光刻机巨头 ASML 杀入 AI!豪掷 15 亿押注「欧版 OpenAI」,成最大股东
人工智能·openai
机器之心11 小时前
全球图生视频榜单第一,爱诗科技PixVerse V5如何改变一亿用户的视频创作
人工智能·openai
新智元11 小时前
2025年了,AI还看不懂时钟!90%人都能答对,顶尖AI全军覆没
人工智能·openai
湫兮之风11 小时前
OpenCV: Mat存储方式全解析-单通道、多通道内存布局详解
人工智能·opencv·计算机视觉