PyTorch学习之 torch.squeeze 函数

PyTorch学习之 torch.squeeze 函数

一、功能

torch.squeeze 的主要作用是从给定的张量 input 中移除所有尺寸为1的维度。

二、基本语法

python 复制代码
torch.squeeze(input, dim=None)

三、参数说明

  • input (Tensor): 输入的张量。
  • dim (int, 可选): 指定要移除的尺寸为1的维度
    • 如果未指定,函数将移除所有尺寸为1的维度。
    • 如果指定的维度不为1,则 torch.squeeze 不会对该维度进行操作
    • 如果所有维度都不为1且未指定 dim 参数,则返回的张量与输入张量相同

四、返回值

  • 返回一个新的张量,移除了指定的尺寸为1的维度。
  • ⚠️如果没有可以移除的维度,则返回与输入相同的张量。

五、示例

以下是一些使用 torch.squeeze 的示例,以帮助更好地理解其用法。

示例 1: 移除所有尺寸为1的维度
python 复制代码
import torch

# 创建一个张量,其形状为 (1, 3, 1, 5)
x = torch.randn(1, 3, 1, 5)
print("原始张量形状:", x.shape)

# 使用 torch.squeeze 移除所有尺寸为1的维度
y = x.squeeze()
print("移除后张量形状:", y.shape)

输出:

原始张量形状: torch.Size([1, 3, 1, 5])
移除后张量形状: torch.Size([3, 5])
示例 2: 移除指定维度(该维度尺寸为1)
python 复制代码
import torch

# 创建一个张量,其形状为 (1, 3, 1, 5)
x = torch.randn(1, 3, 1, 5)
print("原始张量形状:", x.shape)

# 指定维度移除,尝试移除第0维
y = x.squeeze(0)
print("移除第0维后的张量形状:", y.shape)

# 尝试移除第2维
z = x.squeeze(2)
print("移除第2维后的张量形状:", z.shape)

输出:

原始张量形状: torch.Size([1, 3, 1, 5])
移除第0维后的张量形状: torch.Size([3, 1, 5])
移除第2维后的张量形状: torch.Size([1, 3, 5])
相关推荐
m0_7431064638 分钟前
【论文笔记】MV-DUSt3R+:两秒重建一个3D场景
论文阅读·深度学习·计算机视觉·3d·几何学
m0_7431064640 分钟前
【论文笔记】TranSplat:深度refine的camera-required可泛化稀疏方法
论文阅读·深度学习·计算机视觉·3d·几何学
AI浩4 小时前
【面试总结】FFN(前馈神经网络)在Transformer模型中先升维再降维的原因
人工智能·深度学习·计算机视觉·transformer
IE066 小时前
深度学习系列75:sql大模型工具vanna
深度学习
不惑_6 小时前
深度学习 · 手撕 DeepLearning4J ,用Java实现手写数字识别 (附UI效果展示)
java·深度学习·ui
CM莫问7 小时前
python实战(十五)——中文手写体数字图像CNN分类
人工智能·python·深度学习·算法·cnn·图像分类·手写体识别
余炜yw7 小时前
深入探讨激活函数在神经网络中的应用
人工智能·深度学习·机器学习
weixin_307779137 小时前
PyTorch基本功能与实现代码
人工智能·pytorch
大丈夫立于天地间8 小时前
ISIS基础知识
网络·网络协议·学习·智能路由器·信息与通信
ARM+FPGA+AI工业主板定制专家8 小时前
基于RK3576/RK3588+FPGA+AI深度学习的轨道异物检测技术研究
人工智能·深度学习