PyTorch学习之 torch.squeeze 函数

PyTorch学习之 torch.squeeze 函数

一、功能

torch.squeeze 的主要作用是从给定的张量 input 中移除所有尺寸为1的维度。

二、基本语法

python 复制代码
torch.squeeze(input, dim=None)

三、参数说明

  • input (Tensor): 输入的张量。
  • dim (int, 可选): 指定要移除的尺寸为1的维度
    • 如果未指定,函数将移除所有尺寸为1的维度。
    • 如果指定的维度不为1,则 torch.squeeze 不会对该维度进行操作
    • 如果所有维度都不为1且未指定 dim 参数,则返回的张量与输入张量相同

四、返回值

  • 返回一个新的张量,移除了指定的尺寸为1的维度。
  • ⚠️如果没有可以移除的维度,则返回与输入相同的张量。

五、示例

以下是一些使用 torch.squeeze 的示例,以帮助更好地理解其用法。

示例 1: 移除所有尺寸为1的维度
python 复制代码
import torch

# 创建一个张量,其形状为 (1, 3, 1, 5)
x = torch.randn(1, 3, 1, 5)
print("原始张量形状:", x.shape)

# 使用 torch.squeeze 移除所有尺寸为1的维度
y = x.squeeze()
print("移除后张量形状:", y.shape)

输出:

原始张量形状: torch.Size([1, 3, 1, 5])
移除后张量形状: torch.Size([3, 5])
示例 2: 移除指定维度(该维度尺寸为1)
python 复制代码
import torch

# 创建一个张量,其形状为 (1, 3, 1, 5)
x = torch.randn(1, 3, 1, 5)
print("原始张量形状:", x.shape)

# 指定维度移除,尝试移除第0维
y = x.squeeze(0)
print("移除第0维后的张量形状:", y.shape)

# 尝试移除第2维
z = x.squeeze(2)
print("移除第2维后的张量形状:", z.shape)

输出:

原始张量形状: torch.Size([1, 3, 1, 5])
移除第0维后的张量形状: torch.Size([3, 1, 5])
移除第2维后的张量形状: torch.Size([1, 3, 5])
相关推荐
靴子学长25 分钟前
基于字节大模型的论文翻译(含免费源码)
人工智能·深度学习·nlp
海棠AI实验室2 小时前
AI的进阶之路:从机器学习到深度学习的演变(一)
人工智能·深度学习·机器学习
南宫生2 小时前
力扣-图论-17【算法学习day.67】
java·学习·算法·leetcode·图论
sanguine__2 小时前
Web APIs学习 (操作DOM BOM)
学习
四口鲸鱼爱吃盐3 小时前
Pytorch | 从零构建GoogleNet对CIFAR10进行分类
人工智能·pytorch·分类
leaf_leaves_leaf3 小时前
win11用一条命令给anaconda环境安装GPU版本pytorch,并检查是否为GPU版本
人工智能·pytorch·python
夜雨飘零13 小时前
基于Pytorch实现的说话人日志(说话人分离)
人工智能·pytorch·python·声纹识别·说话人分离·说话人日志
四口鲸鱼爱吃盐4 小时前
Pytorch | 从零构建MobileNet对CIFAR10进行分类
人工智能·pytorch·分类
苏言の狗4 小时前
Pytorch中关于Tensor的操作
人工智能·pytorch·python·深度学习·机器学习
数据的世界014 小时前
.NET开发人员学习书籍推荐
学习·.net