【Python数据分析】Pandas_数据重采样

数据重采样是将时间序列从一个频率转换至另一个频率的过程,它主要有两种实现方式,分别是降采样和升采样,降采样指将高频率的数据转换为低频率,升采样则与其恰好相反,说明如下:

方法 说明
降采样 将高频率(间隔短)数据转换为低频率(间隔长)。
升采样 将低频率数据转换为高频率。

Pandas 提供了 resample() 函数来实现数据的重采样。

降采样

通过 resample() 函数完成数据的降采样,比如按天计数的频率转换为按月计数。

python 复制代码
import pandas as pd
import numpy as np
rng = pd.date_range('1/1/2021',periods=100,freq='D')
ts = pd.Series(np.random.randn(len(rng)),index=rng)
#降采样后并聚合
print(ts.resample('M').mean())

运行结果:

2021-01-31   -0.001888
2021-02-28   -0.333447
2021-03-31   -0.221355
2021-04-30   -0.507379
Freq: ME, dtype: float64

如果您只想看到月份,那么您可以设置kind=period如下所示:

python 复制代码
ts.resample('M',kind='period').mean()

升采样

升采样是将低频率(时间间隔)转换为高频率,示例如下:

python 复制代码
import pandas as pd
import numpy as np
#生成一份时间序列数据
rng = pd.date_range('1/1/2021', periods=20, freq='3D')
ts = pd.Series(np.random.randn(len(rng)), index=rng)
print(ts.head())
print("\n")
#使用asfreq()在原数据基础上实现频率转换
print(ts.resample('D').asfreq().head())

运行结果:

2021-01-01   -0.378926
2021-01-04   -1.366412
2021-01-07    1.789886
2021-01-10    1.765642
2021-01-13   -2.071414
Freq: 3D, dtype: float64


2021-01-01   -0.378926
2021-01-02         NaN
2021-01-03         NaN
2021-01-04   -1.366412
2021-01-05         NaN
Freq: D, dtype: float64

频率转换

asfreq() 方法不仅能够实现频率转换,还可以保留原频率对应的数值,同时它也可以单独使用,示例如下:

python 复制代码
import pandas as pd
index = pd.date_range('1/1/2021', periods=6, freq='T')
series = pd.Series([0.0, None, 2.0, 3.0,4.0,5.0], index=index)
df = pd.DataFrame({'s':series})
print(df.asfreq("45s"))

运行结果:

                       s
2021-01-01 00:00:00  0.0
2021-01-01 00:00:45  NaN
2021-01-01 00:01:30  NaN
2021-01-01 00:02:15  NaN
2021-01-01 00:03:00  3.0
2021-01-01 00:03:45  NaN
2021-01-01 00:04:30  NaN

插值处理

从上述示例不难看出,升采样的结果会产生缺失值,那么就需要对缺失值进行处理,一般有以下几种处理方式:

方法 说明
pad/ffill 用前一个非缺失值去填充缺失值。
backfill/bfill 用后一个非缺失值去填充缺失值。
interpolater('linear') 线性插值方法。
fillna(value) 指定一个值去替换缺失值。

下面使用插值方法处理 NaN 值,示例如下:

python 复制代码
import pandas as pd
import numpy as np
#创建时间序列数据
rng = pd.date_range('1/1/2021', periods=20, freq='3D')
ts = pd.Series(np.random.randn(len(rng)), index=rng)
print(ts.resample('D').asfreq().head())
print("\n")
#使用ffill处理缺失值
print(ts.resample('D').asfreq().ffill().head())

运行结果:

2021-01-01   -0.136353
2021-01-02         NaN
2021-01-03         NaN
2021-01-04   -0.573291
2021-01-05         NaN
Freq: D, dtype: float64


2021-01-01   -0.136353
2021-01-02   -0.136353
2021-01-03   -0.136353
2021-01-04   -0.573291
2021-01-05   -0.573291
Freq: D, dtype: float64

参考:C语言中文网

相关推荐
thinkMoreAndDoMore37 分钟前
深度学习(3)-TensorFlow入门(常数张量和变量)
开发语言·人工智能·python
kngines1 小时前
【Python量化金融实战】-第1章:Python量化金融概述:1.4 开发环境搭建:Jupyter Notebook、VS Code、PyCharm
python·量化金融
kngines1 小时前
【Python量化金融实战】-第1章:Python量化金融概述:1.2 Python在量化金融中的优势与生态
python·量化金融
wapicn991 小时前
‌挖数据平台对接DeepSeek推出一键云端部署功能:API接口驱动金融、汽车等行业智能化升级
java·人工智能·python·金融·汽车·php
艾思科蓝 AiScholar1 小时前
【SPIE出版,见刊快速,EI检索稳定,浙江水利水电学院主办】2025年物理学与量子计算国际学术会议(ICPQC 2025)
图像处理·人工智能·信息可视化·自然语言处理·数据分析·力扣·量子计算
蓝桉8021 小时前
图片爬取案例
开发语言·数据库·python
wang_yb1 小时前
『Python底层原理』--Python整数为什么可以无限大
python·databook
敲上瘾2 小时前
基础dp——动态规划
java·数据结构·c++·python·算法·线性回归·动态规划
阑梦清川2 小时前
Jupyter里面的manim编程学习
python·jupyter·manim
Dongwoo Jeong2 小时前
类型系统下的语言分类与类型系统基础
java·笔记·python·lisp·fortran·type