【Python机器学习】利用专家知识

对于特定的机器学习应用来说,在特征工程中通常可以利用专家知识。虽然在许多情况下,机器学习的目的是避免创建一组专家设计的规则,但这并不意味着应该舍弃该应用或该领域的先验知识。

通常来说,领域专家可以帮助找出有用的特征,其信息量比数据原始表示要大得多。

举个例子,如果有机票价格、日期、航空公司、出发地、目的地等数据,机器学习模型可能从这些记录中构建一个相当不错的模型,但可能无法学到机票价格中的某些重要因素,比如度假高峰月份和假日期间,机票价格通常更高。虽然某些假日的日期是固定的,其影响可以从日期中学到,但一些假日可能取决于月份,或者由官方规定,需要添加一些特征,模型才可以学习到。

相关推荐
爱吃喵的鲤鱼2 分钟前
linux进程的状态之环境变量
linux·运维·服务器·开发语言·c++
浊酒南街3 分钟前
吴恩达深度学习笔记:卷积神经网络(Foundations of Convolutional Neural Networks)4.9-4.10
人工智能·深度学习·神经网络·cnn
Tony聊跨境18 分钟前
独立站SEO类型及优化:来检查这些方面你有没有落下
网络·人工智能·tcp/ip·ip
懒惰才能让科技进步24 分钟前
从零学习大模型(十二)-----基于梯度的重要性剪枝(Gradient-based Pruning)
人工智能·深度学习·学习·算法·chatgpt·transformer·剪枝
DARLING Zero two♡29 分钟前
关于我、重生到500年前凭借C语言改变世界科技vlog.16——万字详解指针概念及技巧
c语言·开发语言·科技
Gu Gu Study31 分钟前
【用Java学习数据结构系列】泛型上界与通配符上界
java·开发语言
yyfhq32 分钟前
sdnet
python
Qspace丨轻空间35 分钟前
气膜场馆:推动体育文化旅游创新发展的关键力量—轻空间
大数据·人工智能·安全·生活·娱乐
没有不重的名么36 分钟前
门控循环单元GRU
人工智能·深度学习·gru
Ni-Guvara38 分钟前
函数对象笔记
c++·算法