对于特定的机器学习应用来说,在特征工程中通常可以利用专家知识。虽然在许多情况下,机器学习的目的是避免创建一组专家设计的规则,但这并不意味着应该舍弃该应用或该领域的先验知识。
通常来说,领域专家可以帮助找出有用的特征,其信息量比数据原始表示要大得多。
举个例子,如果有机票价格、日期、航空公司、出发地、目的地等数据,机器学习模型可能从这些记录中构建一个相当不错的模型,但可能无法学到机票价格中的某些重要因素,比如度假高峰月份和假日期间,机票价格通常更高。虽然某些假日的日期是固定的,其影响可以从日期中学到,但一些假日可能取决于月份,或者由官方规定,需要添加一些特征,模型才可以学习到。