【Python机器学习】利用专家知识

对于特定的机器学习应用来说,在特征工程中通常可以利用专家知识。虽然在许多情况下,机器学习的目的是避免创建一组专家设计的规则,但这并不意味着应该舍弃该应用或该领域的先验知识。

通常来说,领域专家可以帮助找出有用的特征,其信息量比数据原始表示要大得多。

举个例子,如果有机票价格、日期、航空公司、出发地、目的地等数据,机器学习模型可能从这些记录中构建一个相当不错的模型,但可能无法学到机票价格中的某些重要因素,比如度假高峰月份和假日期间,机票价格通常更高。虽然某些假日的日期是固定的,其影响可以从日期中学到,但一些假日可能取决于月份,或者由官方规定,需要添加一些特征,模型才可以学习到。

相关推荐
A 计算机毕业设计-小途6 分钟前
大四零基础用Vue+ElementUI一周做完化妆品推荐系统?
java·大数据·hadoop·python·spark·毕业设计·毕设
天涯海风1 小时前
检索增强生成(RAG) 缓存增强生成(CAG) 生成中检索(RICHES) 知识库增强语言模型(KBLAM)
人工智能·缓存·语言模型
快去睡觉~2 小时前
力扣73:矩阵置零
算法·leetcode·矩阵
小欣加油2 小时前
leetcode 3 无重复字符的最长子串
c++·算法·leetcode
lxmyzzs3 小时前
基于深度学习CenterPoint的3D目标检测部署实战
人工智能·深度学习·目标检测·自动驾驶·ros·激光雷达·3d目标检测
跟着珅聪学java3 小时前
Apache OpenNLP简介
人工智能·知识图谱
AwhiteV4 小时前
利用图数据库高效解决 Text2sql 任务中表结构复杂时占用过多大模型上下文的问题
数据库·人工智能·自然语言处理·oracle·大模型·text2sql
念念01074 小时前
数学建模竞赛中评价类相关模型
python·数学建模·因子分析·topsis
Black_Rock_br4 小时前
AI on Mac, Your Way!全本地化智能代理,隐私与性能兼得
人工智能·macos
四维碎片4 小时前
【Qt】线程池与全局信号实现异步协作
开发语言·qt·ui·visual studio