【扩散模型(二)】IP-Adapter 从条件分支的视角,快速理解相关的可控生成研究

系列文章目录


文章目录


前言

上一篇文章提到可以从两个分支来看 Stable Diffusion [1](#1),其中:

  • 重建分支(reconstruction)负责从噪声中逐步重建出清晰的图像。
  • 条件分支(condition)则引入额外的信息或条件,指导图像的生成过程,使得生成结果符合特定的要求。

从该视角,可以快速地理解基于 SD 的类似可控生成模型,重点都是在修改 condition 分支的部分,通过修改 corss-attention 中的 QKV 来更好地引入控制条件。

一、IP-Adapter

IP-Adapter [2](#2) 则可以看为很好地引入了图像 condition 来引导去噪过程,其核心部分是有效地将图像与文字条件信息通过 Decouple Cross-Attention 来注入 U-Net。

二、InstantID

InstantID[3](#3) 在 IP-Adapter 的基础上(condition1 从一般的 image encoder 换成了针对 face 的 encoder),多训练了一个 U-Net 的一半(即 ControlNet),并在其中加入了人脸的 landmark 来很好地约束 FaceID 信息,提升了生成时的人脸可控性。

三、MimicBrush

MimicBrush [4](#4) 类似 InstantID,增加了一个 Reference Un-Net 作为条件分支来引入控制条件,而 MimicBrush 与 IP-Adapter、InstantID 的不同点在于:

  • MimicBrush 的重建分支中,是从图像输入(Source Image)来进行重建,即先加噪、再去噪的。
  • 而 IP-Adapter、InstantID 的重建分支中,是直接输入 noise 随机噪声,通过 U-Net 对其进行去噪声的。

总结

有了以上多篇论文架构图的例子,应该能很快识别各种基于 IP-Adapter 的可控生成工作啦!🎉


  1. High-Resolution Image Synthesis with Latent Diffusion Models ↩︎

  2. IP-Adapter: Text Compatible Image Prompt Adapter for Text-to-Image Diffusion Models ↩︎

  3. InstantID: Zero-shot Identity-Preserving Generation in Seconds ↩︎

  4. Zero-shot Image Editing with Reference Imitation ↩︎

相关推荐
Dxy12393102163 分钟前
Python如何使用DrissionPage做自动化:简单入门指南
开发语言·python·自动化
珂朵莉MM5 分钟前
2025年睿抗机器人开发者大赛CAIP-编程技能赛-高职组(国赛)解题报告 | 珂学家
java·开发语言·人工智能·算法·机器人
石去皿5 分钟前
从本地知识库到“活”知识——RAG 落地全景指南
c++·python·大模型·rag
hui函数9 分钟前
Python系列Bug修复PyCharm控制台pip install报错:如何解决 pip install 网络报错 企业网关拦截 User-Agent 问题
python·pycharm·bug
猫头虎9 分钟前
Claude Code 永动机:ralph-loop 无限循环迭代插件详解(安装 / 原理 / 最佳实践 / 避坑)
ide·人工智能·langchain·开源·编辑器·aigc·编程技术
a努力。12 分钟前
虾皮Java面试被问:JVM Native Memory Tracking追踪堆外内存泄漏
java·开发语言·jvm·后端·python·面试
Kratzdisteln13 分钟前
【Python】Flask
开发语言·python·flask
aigcapi13 分钟前
如何让AI推广我的品牌?成长期企业GEO优化的“降本增效”实战指南
人工智能
百***243720 分钟前
GPT-5.2国内调用+API中转+成本管控
大数据·人工智能·深度学习
min18112345627 分钟前
金融风控中的实时行为建模
大数据·人工智能