【扩散模型(二)】IP-Adapter 从条件分支的视角,快速理解相关的可控生成研究

系列文章目录


文章目录


前言

上一篇文章提到可以从两个分支来看 Stable Diffusion [1](#1),其中:

  • 重建分支(reconstruction)负责从噪声中逐步重建出清晰的图像。
  • 条件分支(condition)则引入额外的信息或条件,指导图像的生成过程,使得生成结果符合特定的要求。

从该视角,可以快速地理解基于 SD 的类似可控生成模型,重点都是在修改 condition 分支的部分,通过修改 corss-attention 中的 QKV 来更好地引入控制条件。

一、IP-Adapter

IP-Adapter [2](#2) 则可以看为很好地引入了图像 condition 来引导去噪过程,其核心部分是有效地将图像与文字条件信息通过 Decouple Cross-Attention 来注入 U-Net。

二、InstantID

InstantID[3](#3) 在 IP-Adapter 的基础上(condition1 从一般的 image encoder 换成了针对 face 的 encoder),多训练了一个 U-Net 的一半(即 ControlNet),并在其中加入了人脸的 landmark 来很好地约束 FaceID 信息,提升了生成时的人脸可控性。

三、MimicBrush

MimicBrush [4](#4) 类似 InstantID,增加了一个 Reference Un-Net 作为条件分支来引入控制条件,而 MimicBrush 与 IP-Adapter、InstantID 的不同点在于:

  • MimicBrush 的重建分支中,是从图像输入(Source Image)来进行重建,即先加噪、再去噪的。
  • 而 IP-Adapter、InstantID 的重建分支中,是直接输入 noise 随机噪声,通过 U-Net 对其进行去噪声的。

总结

有了以上多篇论文架构图的例子,应该能很快识别各种基于 IP-Adapter 的可控生成工作啦!🎉


  1. High-Resolution Image Synthesis with Latent Diffusion Models ↩︎

  2. IP-Adapter: Text Compatible Image Prompt Adapter for Text-to-Image Diffusion Models ↩︎

  3. InstantID: Zero-shot Identity-Preserving Generation in Seconds ↩︎

  4. Zero-shot Image Editing with Reference Imitation ↩︎

相关推荐
爱摄影的程序猿5 分钟前
Python Web 框架 django-vue3-admin快速入门 django后台管理
前端·python·django
萧鼎7 分钟前
Python WebSockets 库详解:从基础到实战
开发语言·python
Code_流苏13 分钟前
AI知识补全(十四):零样本学习与少样本学习是什么?
人工智能·元学习·少样本学习·零样本学习·语义嵌入
Yvette-W15 分钟前
ChatGPT 迎来 4o模型:更强大的图像生成能力与潜在风险
人工智能·chatgpt
Shockang16 分钟前
机器学习的一百个概念(5)数据增强
人工智能·机器学习
洁洁!19 分钟前
数据采集助力AI大模型训练
前端·人工智能·easyui
劲速云算力20 分钟前
云算力:AIGC 时代的 “数字能源”
aigc·能源
平平无奇科研小天才26 分钟前
scGPT环境安装
人工智能
xcLeigh32 分钟前
计算机视觉入门:从像素到理解的旅程
人工智能·python·opencv·计算机视觉
独好紫罗兰38 分钟前
洛谷题单2-P5717 【深基3.习8】三角形分类-python-流程图重构
开发语言·python·算法