【扩散模型(二)】IP-Adapter 从条件分支的视角,快速理解相关的可控生成研究

系列文章目录


文章目录


前言

上一篇文章提到可以从两个分支来看 Stable Diffusion [1](#1),其中:

  • 重建分支(reconstruction)负责从噪声中逐步重建出清晰的图像。
  • 条件分支(condition)则引入额外的信息或条件,指导图像的生成过程,使得生成结果符合特定的要求。

从该视角,可以快速地理解基于 SD 的类似可控生成模型,重点都是在修改 condition 分支的部分,通过修改 corss-attention 中的 QKV 来更好地引入控制条件。

一、IP-Adapter

IP-Adapter [2](#2) 则可以看为很好地引入了图像 condition 来引导去噪过程,其核心部分是有效地将图像与文字条件信息通过 Decouple Cross-Attention 来注入 U-Net。

二、InstantID

InstantID[3](#3) 在 IP-Adapter 的基础上(condition1 从一般的 image encoder 换成了针对 face 的 encoder),多训练了一个 U-Net 的一半(即 ControlNet),并在其中加入了人脸的 landmark 来很好地约束 FaceID 信息,提升了生成时的人脸可控性。

三、MimicBrush

MimicBrush [4](#4) 类似 InstantID,增加了一个 Reference Un-Net 作为条件分支来引入控制条件,而 MimicBrush 与 IP-Adapter、InstantID 的不同点在于:

  • MimicBrush 的重建分支中,是从图像输入(Source Image)来进行重建,即先加噪、再去噪的。
  • 而 IP-Adapter、InstantID 的重建分支中,是直接输入 noise 随机噪声,通过 U-Net 对其进行去噪声的。

总结

有了以上多篇论文架构图的例子,应该能很快识别各种基于 IP-Adapter 的可控生成工作啦!🎉


  1. High-Resolution Image Synthesis with Latent Diffusion Models ↩︎

  2. IP-Adapter: Text Compatible Image Prompt Adapter for Text-to-Image Diffusion Models ↩︎

  3. InstantID: Zero-shot Identity-Preserving Generation in Seconds ↩︎

  4. Zero-shot Image Editing with Reference Imitation ↩︎

相关推荐
CodeLinghu1 分钟前
「 LLM实战 - 企业 」基于 markdown-it AST 的 Markdown 文献翻译实现详解
人工智能·ai
程序员哈基耄1 分钟前
一键生成专属形象照——AI智能相馆引领摄影新潮流
人工智能
DeeGLMath3 分钟前
机器学习中回归训练的示例
人工智能·机器学习·回归
我是哈哈hh3 分钟前
【Python数据分析】数据可视化(全)
开发语言·python·信息可视化·数据挖掘·数据分析
勇气要爆发4 分钟前
【第二阶段—机器学习入门】第十五章:机器学习核心概念
人工智能·机器学习
魔镜前的帅比4 分钟前
LangGraph(流程化控制)
python·langchain
yaoh.wang5 分钟前
力扣(LeetCode) 69: x 的平方根 - 解法思路
python·算法·leetcode·面试·职场和发展·牛顿法·二分法
山东小木5 分钟前
A2UI:智能问数的界面构建策略
大数据·人工智能·jboltai·javaai·springboot ai·a2ui
拾贰_C6 分钟前
【python| pytorch】卸载py库,手动法
开发语言·pytorch·python
认真学GIS7 分钟前
逐3小时降水量!全国2421个气象站点1951-2024年逐3小时尺度长时间序列降水量(EXCEL格式)数据
人工智能·算法·机器学习