【扩散模型(二)】IP-Adapter 从条件分支的视角,快速理解相关的可控生成研究

系列文章目录


文章目录


前言

上一篇文章提到可以从两个分支来看 Stable Diffusion [1](#1),其中:

  • 重建分支(reconstruction)负责从噪声中逐步重建出清晰的图像。
  • 条件分支(condition)则引入额外的信息或条件,指导图像的生成过程,使得生成结果符合特定的要求。

从该视角,可以快速地理解基于 SD 的类似可控生成模型,重点都是在修改 condition 分支的部分,通过修改 corss-attention 中的 QKV 来更好地引入控制条件。

一、IP-Adapter

IP-Adapter [2](#2) 则可以看为很好地引入了图像 condition 来引导去噪过程,其核心部分是有效地将图像与文字条件信息通过 Decouple Cross-Attention 来注入 U-Net。

二、InstantID

InstantID[3](#3) 在 IP-Adapter 的基础上(condition1 从一般的 image encoder 换成了针对 face 的 encoder),多训练了一个 U-Net 的一半(即 ControlNet),并在其中加入了人脸的 landmark 来很好地约束 FaceID 信息,提升了生成时的人脸可控性。

三、MimicBrush

MimicBrush [4](#4) 类似 InstantID,增加了一个 Reference Un-Net 作为条件分支来引入控制条件,而 MimicBrush 与 IP-Adapter、InstantID 的不同点在于:

  • MimicBrush 的重建分支中,是从图像输入(Source Image)来进行重建,即先加噪、再去噪的。
  • 而 IP-Adapter、InstantID 的重建分支中,是直接输入 noise 随机噪声,通过 U-Net 对其进行去噪声的。

总结

有了以上多篇论文架构图的例子,应该能很快识别各种基于 IP-Adapter 的可控生成工作啦!🎉


  1. High-Resolution Image Synthesis with Latent Diffusion Models ↩︎

  2. IP-Adapter: Text Compatible Image Prompt Adapter for Text-to-Image Diffusion Models ↩︎

  3. InstantID: Zero-shot Identity-Preserving Generation in Seconds ↩︎

  4. Zero-shot Image Editing with Reference Imitation ↩︎

相关推荐
AI浩19 小时前
基于特征信息驱动的位置高斯分布估计的小目标检测
人工智能·目标检测·计算机视觉
feifeigo12319 小时前
基于MATLAB的木材图像去噪算法实现
算法·计算机视觉·matlab
GISer_Jing19 小时前
AI编程革命:Trae如何重塑前端开发
前端·前端框架·aigc·ai编程
豌豆学姐19 小时前
Sora2 视频生成 API 如何对接?附可直接使用的开源前端项目
前端·人工智能·开源·aigc·php
普鲁夕格19 小时前
AI翻唱!赛马娘全角色&曼波RVC模型下载,支持一键AI翻唱/变声
人工智能
股朋公式网19 小时前
斩仙飞刀、 通达信飞刀 源码
python·算法
不吃橘子的橘猫19 小时前
NVIDIA DLI 《Build a Deep Research Agent》学习笔记
开发语言·数据库·笔记·python·学习·算法·ai
薛不痒19 小时前
深度学习介绍以及深度学习相关配置
人工智能·深度学习
学Linux的语莫20 小时前
python的基础使用
开发语言·python
万粉变现经纪人20 小时前
如何解决 pip install SSL 报错 ValueError: check_hostname requires server_hostname 问题
网络·python·网络协议·beautifulsoup·bug·ssl·pip