Z变换详细介绍

Z变换是一种强有力的数学工具,用于分析和设计离散时间信号和系统。它是傅里叶变换和拉普拉斯变换在离散时间域的推广,广泛应用于数字信号处理、控制系统等领域。

定义

离散时间信号 x [ n ] x[n] x[n]的Z变换定义为:
X ( z ) = ∑ n = − ∞ ∞ x [ n ] ⋅ z − n X(z) = \sum_{n=-\infty}^{\infty} x[n] \cdot z^{-n} X(z)=n=−∞∑∞x[n]⋅z−n

其中, z z z是一个复数, z = r e j ω z = re^{j\omega} z=rejω, r r r是幅度, ω \omega ω是相角。

Z变换的基本性质

  1. 线性性

    若 x 1 [ n ] x_1[n] x1[n]和 x 2 [ n ] x_2[n] x2[n]的Z变换分别为 X 1 ( z ) X_1(z) X1(z)和 X 2 ( z ) X_2(z) X2(z),则
    a 1 x 1 [ n ] + a 2 x 2 [ n ] → a 1 X 1 ( z ) + a 2 X 2 ( z ) a_1 x_1[n] + a_2 x_2[n] \rightarrow a_1 X_1(z) + a_2 X_2(z) a1x1[n]+a2x2[n]→a1X1(z)+a2X2(z)

  2. 时间平移

    若 x [ n ] x[n] x[n]的Z变换为 X ( z ) X(z) X(z),则
    x [ n − k ] → z − k X ( z ) x[n - k] \rightarrow z^{-k} X(z) x[n−k]→z−kX(z)

  3. 卷积

    若 x 1 [ n ] x_1[n] x1[n]和 x 2 [ n ] x_2[n] x2[n]的Z变换分别为 X 1 ( z ) X_1(z) X1(z)和 X 2 ( z ) X_2(z) X2(z),则卷积
    y [ n ] = x 1 [ n ] ∗ x 2 [ n ] → Y ( z ) = X 1 ( z ) ⋅ X 2 ( z ) y[n] = x_1[n] * x_2[n] \rightarrow Y(z) = X_1(z) \cdot X_2(z) y[n]=x1[n]∗x2[n]→Y(z)=X1(z)⋅X2(z)

  4. 初值定理
    x [ 0 ] = lim ⁡ z → ∞ X ( z ) x[0] = \lim_{z \to \infty} X(z) x[0]=z→∞limX(z)

  5. 终值定理
    lim ⁡ n → ∞ x [ n ] = lim ⁡ z → 1 ( z − 1 ) X ( z ) \lim_{n \to \infty} x[n] = \lim_{z \to 1} (z - 1) X(z) n→∞limx[n]=z→1lim(z−1)X(z)

逆Z变换

逆Z变换用于将频域信号转换回时域信号,定义为:
x [ n ] = 1 2 π j ∮ C X ( z ) z n − 1 d z x[n] = \frac{1}{2\pi j} \oint_{C} X(z) z^{n-1} dz x[n]=2πj1∮CX(z)zn−1dz

其中,积分路径 C C C是一个包含所有 X ( z ) X(z) X(z)极点的闭合路径。

常用的方法包括:

  1. 部分分式展开法 :将 X ( z ) X(z) X(z)展开成部分分式,再将每个部分分式逆变换。
  2. 幂级数展开法 :将 X ( z ) X(z) X(z)展开成幂级数,再根据定义求逆变换。
  3. 查表法:利用Z变换对照表进行逆变换。

稳定性和因果性

  • 稳定性 :系统的Z变换 H ( z ) H(z) H(z)在单位圆内绝对收敛。
  • 因果性 :系统的Z变换 H ( z ) H(z) H(z)具有所有极点在单位圆内。

Z变换的应用

  1. 差分方程求解

    通过Z变换,将差分方程转换为代数方程,求解后再通过逆Z变换得到时域解。

  2. 系统分析

    分析系统的稳定性、频率响应等。

  3. 滤波器设计

    设计数字滤波器,满足特定频率特性。

代码示例

以下是使用Python和scipy库进行Z变换和逆Z变换的示例:

python 复制代码
import numpy as np
import matplotlib.pyplot as plt
from scipy.signal import residue, freqz

# 定义差分方程系数
b = [1, -0.5]  # 分子系数
a = [1, -1.5, 0.7]  # 分母系数

# 计算系统的频率响应
w, h = freqz(b, a)

# 绘制频率响应
plt.figure()
plt.plot(w, 20 * np.log10(abs(h)))
plt.title('Frequency response')
plt.xlabel('Frequency [rad/sample]')
plt.ylabel('Amplitude [dB]')
plt.grid()
plt.show()

# 部分分式展开
r, p, k = residue(b, a)
print("Residues:", r)
print("Poles:", p)
print("Direct term:", k)

# 使用逆Z变换求解时域响应(部分分式展开法)
n = np.arange(0, 20)
h = np.zeros_like(n, dtype=np.float64)
for i in range(len(r)):
    h += r[i] * p[i]**n

plt.figure()
plt.stem(n, h, use_line_collection=True)
plt.title('Impulse response')
plt.xlabel('n')
plt.ylabel('h[n]')
plt.grid()
plt.show()

在这个示例中,定义了一个差分方程,通过Z变换分析其频率响应,并通过部分分式展开法计算时域响应。

相关推荐
寂—作业逆行者3 天前
反比例函数的深层理解、题目技巧与应用
数学·函数·反比例函数
寂—作业逆行者3 天前
初识反比例函数
数学·函数·反比例函数
青花瓷10 天前
空间内任意点到直线和平面的距离推导
数学·平面·解析几何
Lyrella11 天前
拉格朗日反演小记
数学
AI是这个时代的魔法12 天前
The Action Replay Process
数学·算法·随机决策过程
啊阿狸不会拉杆13 天前
人工智能数学基础(十)—— 图论
人工智能·python·数学·算法·图论
啊阿狸不会拉杆18 天前
人工智能数学基础(五):概率论
人工智能·python·数学·算法·概率论
啊阿狸不会拉杆20 天前
人工智能数学基础(四):线性代数
人工智能·python·数学·算法·机器学习
量子位22 天前
数学家们仍在追赶天才拉马努金
人工智能·数学
是数学系的小孩儿22 天前
数值分析、数值代数之追赶法
数学·matlab·电脑