【LeetCode】每日一题:LRU缓存

请你设计并实现一个满足 LRU (最近最少使用) 缓存 约束的数据结构。

实现 LRUCache 类:

LRUCache(int capacity) 以 正整数 作为容量 capacity 初始化 LRU 缓存

int get(int key) 如果关键字 key 存在于缓存中,则返回关键字的值,否则返回 -1 。

void put(int key, int value) 如果关键字 key 已经存在,则变更其数据值 value ;如果不存在,则向缓存中插入该组 key-value 。如果插入操作导致关键字数量超过 capacity ,则应该 逐出 最久未使用的关键字。

函数 get 和 put 必须以 O(1) 的平均时间复杂度运行。

解题思路

看的题解,双向链表+哈希表+假链表头尾

AC代码

python 复制代码
class DLinkedNode:
    def __init__(self, key=0, value=0):
        self.key = key
        self.value = value
        self.prev = None
        self.next = None


class LRUCache:

    def __init__(self, capacity: int):
        self.cache = dict()
        # 使用伪头部和伪尾部节点    
        self.head = DLinkedNode()
        self.tail = DLinkedNode()
        self.head.next = self.tail
        self.tail.prev = self.head
        self.capacity = capacity
        self.size = 0


    def get(self, key: int) -> int:
        if key not in self.cache:
            return -1
        node = self.cache[key]
        self.moveToHead(node)
        return node.value

      

    def put(self, key: int, value: int) -> None:
        if key not in self.cache:
            # 如果 key 不存在,创建一个新的节点
            node = DLinkedNode(key, value)
            # 添加进哈希表
            self.cache[key] = node
            # 添加至双向链表的头部
            self.addToHead(node)
            self.size += 1
            if self.size > self.capacity:
                # 如果超出容量,删除双向链表的尾部节点
                removed = self.removeTail()
                # 删除哈希表中对应的项
                self.cache.pop(removed.key)
                self.size -= 1
        else:
            # 如果 key 存在,先通过哈希表定位,再修改 value,并移到头部
            node = self.cache[key]
            node.value = value
            self.moveToHead(node)

    def addToHead(self, node):
        node.next = self.head.next
        node.prev = self.head
        self.head.next.prev = node
        self.head.next = node

    def removedNode(self, node):
        node.prev.next = node.next
        node.next.prev = node.prev

    def moveToHead(self, node):
        self.removedNode(node)
        self.addToHead(node)

    def removeTail(self):
        node = self.tail.prev
        self.removedNode(node)
        return node

        

# Your LRUCache object will be instantiated and called as such:
# obj = LRUCache(capacity)
# param_1 = obj.get(key)
# obj.put(key,value)
相关推荐
陈苏同学1 分钟前
MPC控制器从入门到进阶(小车动态避障变道仿真 - Python)
人工智能·python·机器学习·数学建模·机器人·自动驾驶
诚丞成5 分钟前
BFS算法篇——从晨曦到星辰,BFS算法在多源最短路径问题中的诗意航行(上)
java·算法·宽度优先
mahuifa5 分钟前
python实现usb热插拔检测(linux)
linux·服务器·python
hongjianMa5 分钟前
2024睿抗编程赛国赛-题解
算法·深度优先·图论·caip
雪芽蓝域zzs7 分钟前
鸿蒙Next开发 获取APP缓存大小和清除缓存
缓存·华为·harmonyos
zandy101112 分钟前
高并发场景下的BI架构设计:衡石分布式查询引擎与缓存分级策略
分布式·缓存·高并发架构·弹性扩展·分布式查询·缓存分级·mpp引擎
kebijuelun15 分钟前
KV cache 缓存与量化:加速大型语言模型推理的关键技术
缓存·语言模型·kotlin
czy878747525 分钟前
两种常见的C语言实现64位无符号整数乘以64位无符号整数的实现方法
c语言·算法
MyhEhud33 分钟前
kotlin @JvmStatic注解的作用和使用场景
开发语言·python·kotlin
yzx99101341 分钟前
支持向量机案例
算法·机器学习·支持向量机