nlp--最大匹配分词(计算召回率)

最大匹配算法是一种常见的中文分词算法,其核心思想是从左向右取词,以词典中最长的词为优先匹配。这里我将为你展示一个简单的最大匹配分词算法的实现,并结合输入任意句子、显示分词结果以及计算分词召回率。

代码 :

复制代码
# happy coding
# -*- coding: UTF-8 -*-
'''
@project:NLP
@auth:y1441206
@file:最大匹配法分词.py
@date:2024-06-30 16:08
'''
class MaxMatchSegmenter:
    def __init__(self, dictionary):
        self.dictionary = dictionary
        self.max_length = max(len(word) for word in dictionary)

    def segment(self, text):
        result = []
        index = 0
        n = len(text)

        while index < n:
            matched = False
            for length in range(self.max_length, 0, -1):
                if index + length <= n:
                    word = text[index:index+length]
                    if word in self.dictionary:
                        result.append(word)
                        index += length
                        matched = True
                        break
            if not matched:
                result.append(text[index])
                index += 1

        return result

def calculate_recall(reference, segmented):
    total_words = len(reference)
    correctly_segmented = sum(1 for word in segmented if word in reference)
    recall = correctly_segmented / total_words if total_words > 0 else 0
    return recall

# Example usage
if __name__ == "__main__":
    # Example dictionary
    dictionary = {"北京", "天安门", "广场", "国家", "博物馆", "人民", "大会堂", "长城"}

    # Example text to segment
    text = "北京天安门广场是中国的象征,国家博物馆和人民大会堂也在附近。"

    # Initialize segmenter with dictionary
    segmenter = MaxMatchSegmenter(dictionary)

    # Segment the text
    segmented_text = segmenter.segment(text)

    # Print segmented result
    print("分词结果:", " / ".join(segmented_text))

    # Example for calculating recall
    reference_segmentation = ["北京", "天安门广场", "是", "中国", "的", "象征", ",", "国家", "博物馆", "和", "人民大会堂", "也", "在", "附近", "。"]
    recall = calculate_recall(reference_segmentation, segmented_text)
    print("分词召回率:", recall)

运行结果 :

相关推荐
木头程序员17 小时前
机器学习模型成员推断攻击与防御:敏感数据保护实战指南
人工智能·机器学习
咋吃都不胖lyh17 小时前
归因分析(Attribution Analysis)详解
大数据·人工智能
AI科技星17 小时前
能量绝对性与几何本源:统一场论能量方程的第一性原理推导、验证与范式革命
服务器·人工智能·科技·线性代数·算法·机器学习·生活
浔川python社17 小时前
浔川 AI 翻译 v6.0 版本合规优化公告:强化违规内容治理,明确恶意使用处置规则
人工智能
2401_8612775517 小时前
中国电信星辰AI大模型有哪些主要功能
人工智能·云计算·软件工程·语音识别
夫唯不争,故无尤也17 小时前
智能旅行助手agent:从零构建AI旅游推荐
人工智能·python·大模型开发
仙魁XAN17 小时前
如何用豆包、即梦 AI ,快速实现“AI森林治愈系风格视频”的效果
人工智能·ai·视频生成·豆包·即梦·森林治愈系
春日见17 小时前
控制算法:PID算法
linux·运维·服务器·人工智能·驱动开发·算法·机器人
UI设计兰亭妙微17 小时前
解锁流畅体验:UX 设计中降低认知负荷的核心策略与实践
人工智能·ux·用户体验设计
wen_zhufeng17 小时前
解释Vector Quantize,从简单到原理
人工智能