nlp--最大匹配分词(计算召回率)

最大匹配算法是一种常见的中文分词算法,其核心思想是从左向右取词,以词典中最长的词为优先匹配。这里我将为你展示一个简单的最大匹配分词算法的实现,并结合输入任意句子、显示分词结果以及计算分词召回率。

代码 :

复制代码
# happy coding
# -*- coding: UTF-8 -*-
'''
@project:NLP
@auth:y1441206
@file:最大匹配法分词.py
@date:2024-06-30 16:08
'''
class MaxMatchSegmenter:
    def __init__(self, dictionary):
        self.dictionary = dictionary
        self.max_length = max(len(word) for word in dictionary)

    def segment(self, text):
        result = []
        index = 0
        n = len(text)

        while index < n:
            matched = False
            for length in range(self.max_length, 0, -1):
                if index + length <= n:
                    word = text[index:index+length]
                    if word in self.dictionary:
                        result.append(word)
                        index += length
                        matched = True
                        break
            if not matched:
                result.append(text[index])
                index += 1

        return result

def calculate_recall(reference, segmented):
    total_words = len(reference)
    correctly_segmented = sum(1 for word in segmented if word in reference)
    recall = correctly_segmented / total_words if total_words > 0 else 0
    return recall

# Example usage
if __name__ == "__main__":
    # Example dictionary
    dictionary = {"北京", "天安门", "广场", "国家", "博物馆", "人民", "大会堂", "长城"}

    # Example text to segment
    text = "北京天安门广场是中国的象征,国家博物馆和人民大会堂也在附近。"

    # Initialize segmenter with dictionary
    segmenter = MaxMatchSegmenter(dictionary)

    # Segment the text
    segmented_text = segmenter.segment(text)

    # Print segmented result
    print("分词结果:", " / ".join(segmented_text))

    # Example for calculating recall
    reference_segmentation = ["北京", "天安门广场", "是", "中国", "的", "象征", ",", "国家", "博物馆", "和", "人民大会堂", "也", "在", "附近", "。"]
    recall = calculate_recall(reference_segmentation, segmented_text)
    print("分词召回率:", recall)

运行结果 :

相关推荐
Hello123网站14 分钟前
探迹SalesGPT
人工智能·ai工具
摘星星的屋顶16 分钟前
论文阅读记录之《VelocityGPT 》
论文阅读·人工智能·深度学习·学习
格林威30 分钟前
工业相机如何通过光度立体成像技术实现高效精准的2.5D缺陷检测
人工智能·深度学习·数码相机·yolo·计算机视觉
MarkHD36 分钟前
大语言模型入门指南:从原理到实践应用
人工智能·语言模型·自然语言处理
A尘埃37 分钟前
NLP(自然语言处理, Natural Language Processing)
人工智能·自然语言处理·nlp
dlraba80237 分钟前
机器学习实战(二):Pandas 特征工程与模型协同进阶
人工智能·机器学习·pandas
一碗白开水一39 分钟前
【第19话:定位建图】SLAM点云配准之3D-3D ICP(Iterative Closest Point)方法详解
人工智能·算法
mit6.82441 分钟前
[rStar] 策略与奖励大语言模型
人工智能·语言模型
CV-杨帆1 小时前
论文阅读:arxiv 2023 Large Language Models are Not Stable Recommender Systems
论文阅读·人工智能·语言模型
羊羊小栈1 小时前
基于「YOLO目标检测 + 多模态AI分析」的植物病害检测分析系统(vue+flask+数据集+模型训练)
人工智能·yolo·目标检测·毕业设计·创业创新·大作业