nlp--最大匹配分词(计算召回率)

最大匹配算法是一种常见的中文分词算法,其核心思想是从左向右取词,以词典中最长的词为优先匹配。这里我将为你展示一个简单的最大匹配分词算法的实现,并结合输入任意句子、显示分词结果以及计算分词召回率。

代码 :

复制代码
# happy coding
# -*- coding: UTF-8 -*-
'''
@project:NLP
@auth:y1441206
@file:最大匹配法分词.py
@date:2024-06-30 16:08
'''
class MaxMatchSegmenter:
    def __init__(self, dictionary):
        self.dictionary = dictionary
        self.max_length = max(len(word) for word in dictionary)

    def segment(self, text):
        result = []
        index = 0
        n = len(text)

        while index < n:
            matched = False
            for length in range(self.max_length, 0, -1):
                if index + length <= n:
                    word = text[index:index+length]
                    if word in self.dictionary:
                        result.append(word)
                        index += length
                        matched = True
                        break
            if not matched:
                result.append(text[index])
                index += 1

        return result

def calculate_recall(reference, segmented):
    total_words = len(reference)
    correctly_segmented = sum(1 for word in segmented if word in reference)
    recall = correctly_segmented / total_words if total_words > 0 else 0
    return recall

# Example usage
if __name__ == "__main__":
    # Example dictionary
    dictionary = {"北京", "天安门", "广场", "国家", "博物馆", "人民", "大会堂", "长城"}

    # Example text to segment
    text = "北京天安门广场是中国的象征,国家博物馆和人民大会堂也在附近。"

    # Initialize segmenter with dictionary
    segmenter = MaxMatchSegmenter(dictionary)

    # Segment the text
    segmented_text = segmenter.segment(text)

    # Print segmented result
    print("分词结果:", " / ".join(segmented_text))

    # Example for calculating recall
    reference_segmentation = ["北京", "天安门广场", "是", "中国", "的", "象征", ",", "国家", "博物馆", "和", "人民大会堂", "也", "在", "附近", "。"]
    recall = calculate_recall(reference_segmentation, segmented_text)
    print("分词召回率:", recall)

运行结果 :

相关推荐
河南博为智能科技有限公司7 分钟前
RS485转以太网串口服务器-串口设备联网的理想选择
大数据·服务器·人工智能·单片机·嵌入式硬件·物联网
算家计算21 分钟前
英伟达谷歌打响“太空算力争夺战”,下一战场竟是星辰大海?
人工智能·芯片·资讯
HyperAI超神经37 分钟前
在线教程丨端侧TTS新SOTA!NeuTTS-Air基于0.5B模型实现3秒音频克隆
人工智能·深度学习·机器学习·音视频·tts·音频克隆·neutts-air
wwwzhouhui40 分钟前
2025年11月1日-AI 驱动教学革命:3 分钟生成专业级动画课件,还能导出视频 GIF!
人工智能·音视频·ai动画教学
国科安芯1 小时前
抗辐照MCU芯片在无人叉车领域的性能评估与选型建议
网络·人工智能·单片机·嵌入式硬件·安全
用户5191495848451 小时前
原型污染攻击工具揭秘:Prototype Pollution Gadgets Finder
人工智能·aigc
VXHAruanjian8881 小时前
以智促效,释放创新力量,RPA助力企业全面自动化变革
大数据·人工智能
Godspeed Zhao1 小时前
自动驾驶中的传感器技术76——Navigation(13)
人工智能·机器学习·自动驾驶
CoovallyAIHub1 小时前
首届AI交易大赛对决!中国模型包揽冠亚军,GPT-5亏损62%垫底
人工智能·google·数据分析
王中阳Go1 小时前
5 - 工具调用 - AI 超级智能体项目教程
人工智能