nlp--最大匹配分词(计算召回率)

最大匹配算法是一种常见的中文分词算法,其核心思想是从左向右取词,以词典中最长的词为优先匹配。这里我将为你展示一个简单的最大匹配分词算法的实现,并结合输入任意句子、显示分词结果以及计算分词召回率。

代码 :

复制代码
# happy coding
# -*- coding: UTF-8 -*-
'''
@project:NLP
@auth:y1441206
@file:最大匹配法分词.py
@date:2024-06-30 16:08
'''
class MaxMatchSegmenter:
    def __init__(self, dictionary):
        self.dictionary = dictionary
        self.max_length = max(len(word) for word in dictionary)

    def segment(self, text):
        result = []
        index = 0
        n = len(text)

        while index < n:
            matched = False
            for length in range(self.max_length, 0, -1):
                if index + length <= n:
                    word = text[index:index+length]
                    if word in self.dictionary:
                        result.append(word)
                        index += length
                        matched = True
                        break
            if not matched:
                result.append(text[index])
                index += 1

        return result

def calculate_recall(reference, segmented):
    total_words = len(reference)
    correctly_segmented = sum(1 for word in segmented if word in reference)
    recall = correctly_segmented / total_words if total_words > 0 else 0
    return recall

# Example usage
if __name__ == "__main__":
    # Example dictionary
    dictionary = {"北京", "天安门", "广场", "国家", "博物馆", "人民", "大会堂", "长城"}

    # Example text to segment
    text = "北京天安门广场是中国的象征,国家博物馆和人民大会堂也在附近。"

    # Initialize segmenter with dictionary
    segmenter = MaxMatchSegmenter(dictionary)

    # Segment the text
    segmented_text = segmenter.segment(text)

    # Print segmented result
    print("分词结果:", " / ".join(segmented_text))

    # Example for calculating recall
    reference_segmentation = ["北京", "天安门广场", "是", "中国", "的", "象征", ",", "国家", "博物馆", "和", "人民大会堂", "也", "在", "附近", "。"]
    recall = calculate_recall(reference_segmentation, segmented_text)
    print("分词召回率:", recall)

运行结果 :

相关推荐
Java后端的Ai之路5 分钟前
【RAG技术】- RAG系统调优手段之高效召回(通俗易懂附案例)
人工智能·rag·rag系统·召回·rag调优
草莓熊Lotso7 分钟前
Linux 基础 IO 初步解析:从 C 库函数到系统调用,理解文件操作本质
linux·运维·服务器·c语言·数据库·c++·人工智能
Cx330❀11 分钟前
从零实现Shell命令行解释器:原理与实战(附源码)
大数据·linux·数据库·人工智能·科技·elasticsearch·搜索引擎
Niuguangshuo7 小时前
深入解析Stable Diffusion基石——潜在扩散模型(LDMs)
人工智能·计算机视觉·stable diffusion
迈火7 小时前
SD - Latent - Interposer:解锁Stable Diffusion潜在空间的创意工具
人工智能·gpt·计算机视觉·stable diffusion·aigc·语音识别·midjourney
wfeqhfxz25887827 小时前
YOLO13-C3k2-GhostDynamicConv烟雾检测算法实现与优化
人工智能·算法·计算机视觉
芝士爱知识a7 小时前
2026年AI面试软件推荐
人工智能·面试·职场和发展·大模型·ai教育·考公·智蛙面试
Li emily7 小时前
解决港股实时行情数据 API 接入难题
人工智能·python·fastapi
Aaron15887 小时前
基于RFSOC的数字射频存储技术应用分析
c语言·人工智能·驱动开发·算法·fpga开发·硬件工程·信号处理
J_Xiong01178 小时前
【Agents篇】04:Agent 的推理能力——思维链与自我反思
人工智能·ai agent·推理