请关注微信公众号:拾荒的小海螺
博客地址:http://lsk-ww.cn/
1、简述
在软件开发过程中,算法扮演着关键的角色。它们用于解决各种问题,从数据处理到搜索、排序等。本文将介绍几种常见的算法及其 Java 实现,包括排序算法、搜索算法以及图算法。
2、排序算法
2.1 冒泡排序(Bubble Sort)
冒泡排序是一种简单的排序算法。它重复地遍历待排序的数列,依次比较两个相邻的元素,如果它们的顺序错误就交换它们的位置。遍历数列的工作重复进行直到没有相邻元素需要交换为止。
bash
public class BubbleSort {
public static void bubbleSort(int[] arr) {
int n = arr.length;
for (int i = 0; i < n - 1; i++) {
for (int j = 0; j < n - i - 1; j++) {
if (arr[j] > arr[j + 1]) {
// 交换 arr[j] 和 arr[j+1]
int temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
}
}
}
}
public static void main(String[] args) {
int[] arr = {64, 34, 25, 12, 22, 11, 90};
bubbleSort(arr);
System.out.println("排序后的数组:");
for (int num : arr) {
System.out.print(num + " ");
}
}
}
2.1 快速排序(Quick Sort)
快速排序是分治法的一种,它通过选择一个基准元素,将数组分为两部分,比基准小的元素放在左边,比基准大的元素放在右边,然后对这两部分分别进行递归排序。
bash
public class QuickSort {
public static void quickSort(int[] arr, int low, int high) {
if (low < high) {
int pi = partition(arr, low, high);
quickSort(arr, low, pi - 1);
quickSort(arr, pi + 1, high);
}
}
private static int partition(int[] arr, int low, int high) {
int pivot = arr[high];
int i = (low - 1);
for (int j = low; j < high; j++) {
if (arr[j] <= pivot) {
i++;
// 交换 arr[i] 和 arr[j]
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
}
// 交换 arr[i+1] 和 arr[high]
int temp = arr[i + 1];
arr[i + 1] = arr[high];
arr[high] = temp;
return i + 1;
}
public static void main(String[] args) {
int[] arr = {10, 7, 8, 9, 1, 5};
quickSort(arr, 0, arr.length - 1);
System.out.println("排序后的数组:");
for (int num : arr) {
System.out.print(num + " ");
}
}
}
3、搜索算法(二分查找(Binary Search))
二分查找是一种高效的查找算法,适用于已经排序的数组。它通过将数组一分为二,反复缩小查找范围来找到目标值。
bash
public class BinarySearch {
public static int binarySearch(int[] arr, int x) {
int low = 0, high = arr.length - 1;
while (low <= high) {
int mid = low + (high - low) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] < x)
low = mid + 1;
else
high = mid - 1;
}
return -1; // 未找到返回 -1
}
public static void main(String[] args) {
int[] arr = {2, 3, 4, 10, 40};
int x = 10;
int result = binarySearch(arr, x);
if (result == -1)
System.out.println("元素未找到");
else
System.out.println("元素在索引 " + result);
}
}
4、 图算法
4.1 深度优先搜索(Depth-First Search, DFS)
深度优先搜索是一种用于遍历或搜索图的算法。它从图的某个起始节点开始,沿着一条路径走到底,然后回溯,继续探索新的路径。
bash
import java.util.*;
public class GraphDFS {
private int V; // 顶点个数
private LinkedList<Integer> adj[]; // 邻接表
GraphDFS(int v) {
V = v;
adj = new LinkedList[v];
for (int i = 0; i < v; ++i)
adj[i] = new LinkedList();
}
void addEdge(int v, int w) {
adj[v].add(w); // 添加边
}
void DFSUtil(int v, boolean visited[]) {
visited[v] = true;
System.out.print(v + " ");
Iterator<Integer> i = adj[v].listIterator();
while (i.hasNext()) {
int n = i.next();
if (!visited[n])
DFSUtil(n, visited);
}
}
void DFS(int v) {
boolean visited[] = new boolean[V];
DFSUtil(v, visited);
}
public static void main(String args[]) {
GraphDFS g = new GraphDFS(4);
g.addEdge(0, 1);
g.addEdge(0, 2);
g.addEdge(1, 2);
g.addEdge(2, 0);
g.addEdge(2, 3);
g.addEdge(3, 3);
System.out.println("从顶点 2 开始的深度优先搜索:");
g.DFS(2);
}
}
4.2 广度优先搜索(Breadth-First Search, BFS)
广度优先搜索是一种用于遍历或搜索图的算法。它从图的某个起始节点开始,首先访问距离最近的节点,然后逐层向外扩展。
bash
import java.util.*;
public class GraphBFS {
private int V; // 顶点个数
private LinkedList<Integer> adj[]; // 邻接表
GraphBFS(int v) {
V = v;
adj = new LinkedList[v];
for (int i = 0; i < v; ++i)
adj[i] = new LinkedList();
}
void addEdge(int v, int w) {
adj[v].add(w); // 添加边
}
void BFS(int s) {
boolean visited[] = new boolean[V];
LinkedList<Integer> queue = new LinkedList<>();
visited[s] = true;
queue.add(s);
while (queue.size() != 0) {
s = queue.poll();
System.out.print(s + " ");
Iterator<Integer> i = adj[s].listIterator();
while (i.hasNext()) {
int n = i.next();
if (!visited[n]) {
visited[n] = true;
queue.add(n);
}
}
}
}
public static void main(String args[]) {
GraphBFS g = new GraphBFS(4);
g.addEdge(0, 1);
g.addEdge(0, 2);
g.addEdge(1, 2);
g.addEdge(2, 0);
g.addEdge(2, 3);
g.addEdge(3, 3);
System.out.println("从顶点 2 开始的广度优先搜索:");
g.BFS(2);
}
}
5、总结
本文介绍了几种常见的算法及其 Java 实现,包括冒泡排序、快速排序、二分查找、深度优先搜索和广度优先搜索。这些算法在实际开发中非常有用,通过掌握它们,可以解决许多常见的编程问题。希望这篇文章能帮助你更好地理解和使用这些算法。