DataWhale机器学习——第六章支持向量机学习笔记

第六章 支持向量机

6.1 间隔与支持向量 支持向量机(SVM)是一种二分类模型,通过最大化分类间隔找到最优分类超平面。支持向量是离决策边界最近的样本点。

6.2 对偶问题 对偶问题通过拉格朗日乘子法,将原始优化问题转换为对偶问题,使得求解高维空间中的最优超平面变得更为简单。

6.3 核函数 核函数用于将低维数据映射到高维空间,使得非线性可分问题在高维空间中变得线性可分。常见核函数有线性核、多项式核和高斯核。

6.4 软间隔与正则化 软间隔SVM通过引入松弛变量,允许一定的分类错误,提高模型的泛化能力。正则化参数用于平衡分类间隔和分类错误。

6.5 支持向量回归 支持向量回归(SVR)用于解决回归问题,通过引入ε不敏感损失函数,控制预测误差范围。

6.6 核方法 核方法广泛应用于各种机器学习算法中,如核PCA、核LDA等,通过核函数将线性方法扩展到非线性情况。

相关推荐
cnxy1886 小时前
围棋对弈Python程序开发完整指南:步骤4 - 提子逻辑和劫争规则实现
开发语言·python·机器学习
.鸣6 小时前
set和map
java·学习
confiself7 小时前
MAI-UI技术报告学习
学习
BOF_dcb9 小时前
【无标题】
pytorch·深度学习·机器学习
知识分享小能手9 小时前
Ubuntu入门学习教程,从入门到精通,Ubuntu 22.04文件压缩与解压缩知识点详解(12)
linux·学习·ubuntu
咚咚王者9 小时前
人工智能之核心基础 机器学习 第一章 基础概述
人工智能·机器学习
iconball11 小时前
个人用云计算学习笔记 --37 Zabbix
运维·笔记·学习·云计算·zabbix
人工智能培训11 小时前
深度学习—卷积神经网络(1)
人工智能·深度学习·神经网络·机器学习·cnn·知识图谱·dnn
云天徽上11 小时前
【机器学习】Kaggle案例之Rossmann连锁药店销售额预测:时间序列与机器学习完美融合的实战指南
机器学习·数据挖掘·kaggle
FPGAI12 小时前
Java学习之计算机存储规则、数据类型、标识符、键盘录入、IDEA
java·学习