DataWhale机器学习——第六章支持向量机学习笔记

第六章 支持向量机

6.1 间隔与支持向量 支持向量机(SVM)是一种二分类模型,通过最大化分类间隔找到最优分类超平面。支持向量是离决策边界最近的样本点。

6.2 对偶问题 对偶问题通过拉格朗日乘子法,将原始优化问题转换为对偶问题,使得求解高维空间中的最优超平面变得更为简单。

6.3 核函数 核函数用于将低维数据映射到高维空间,使得非线性可分问题在高维空间中变得线性可分。常见核函数有线性核、多项式核和高斯核。

6.4 软间隔与正则化 软间隔SVM通过引入松弛变量,允许一定的分类错误,提高模型的泛化能力。正则化参数用于平衡分类间隔和分类错误。

6.5 支持向量回归 支持向量回归(SVR)用于解决回归问题,通过引入ε不敏感损失函数,控制预测误差范围。

6.6 核方法 核方法广泛应用于各种机器学习算法中,如核PCA、核LDA等,通过核函数将线性方法扩展到非线性情况。

相关推荐
西瓜堆1 小时前
提示词工程学习笔记: 工程技术行业提示词推荐
笔记·学习
知乎的哥廷根数学学派2 小时前
面向可信机械故障诊断的自适应置信度惩罚深度校准算法(Pytorch)
人工智能·pytorch·python·深度学习·算法·机器学习·矩阵
数字化转型20252 小时前
企业数字化架构集成能力建设
大数据·程序人生·机器学习
知乎的哥廷根数学学派4 小时前
基于生成对抗U-Net混合架构的隧道衬砌缺陷地质雷达数据智能反演与成像方法(以模拟信号为例,Pytorch)
开发语言·人工智能·pytorch·python·深度学习·机器学习
知乎的哥廷根数学学派4 小时前
基于自适应多尺度小波核编码与注意力增强的脉冲神经网络机械故障诊断(Pytorch)
人工智能·pytorch·python·深度学习·神经网络·机器学习
charlie1145141914 小时前
嵌入式的现代C++教程——constexpr与设计技巧
开发语言·c++·笔记·单片机·学习·算法·嵌入式
好奇龙猫4 小时前
【AI学习-comfyUI学习-三十二节-FLXU原生态反推+controlnet depth(UNion)工作流-各个部分学习】
人工智能·学习
好奇龙猫5 小时前
【大学院-筆記試験練習:数据库(データベース問題訓練) と 软件工程(ソフトウェア)(7)】
学习
j_jiajia6 小时前
(一)人工智能算法之监督学习——KNN
人工智能·学习·算法
Hcoco_me6 小时前
大模型面试题62:PD分离
人工智能·深度学习·机器学习·chatgpt·机器人