DataWhale机器学习——第六章支持向量机学习笔记

第六章 支持向量机

6.1 间隔与支持向量 支持向量机(SVM)是一种二分类模型,通过最大化分类间隔找到最优分类超平面。支持向量是离决策边界最近的样本点。

6.2 对偶问题 对偶问题通过拉格朗日乘子法,将原始优化问题转换为对偶问题,使得求解高维空间中的最优超平面变得更为简单。

6.3 核函数 核函数用于将低维数据映射到高维空间,使得非线性可分问题在高维空间中变得线性可分。常见核函数有线性核、多项式核和高斯核。

6.4 软间隔与正则化 软间隔SVM通过引入松弛变量,允许一定的分类错误,提高模型的泛化能力。正则化参数用于平衡分类间隔和分类错误。

6.5 支持向量回归 支持向量回归(SVR)用于解决回归问题,通过引入ε不敏感损失函数,控制预测误差范围。

6.6 核方法 核方法广泛应用于各种机器学习算法中,如核PCA、核LDA等,通过核函数将线性方法扩展到非线性情况。

相关推荐
Yvonne爱编码13 分钟前
零基础学习数据采集与监视控制系统SCADA
学习·信息可视化·信息与通信·数据可视化
肥肠可耐的西西公主40 分钟前
后端(JDBC)学习笔记(CLASS 1):基础篇(一)
笔记·学习
励志不掉头发的内向程序员1 小时前
从零开始的python学习——文件
开发语言·python·学习
THMAIL1 小时前
量化基金从小白到大师 - 金融数据获取大全:从免费API到Tick级数据实战指南
人工智能·python·深度学习·算法·机器学习·金融·kafka
zzywxc7871 小时前
AI在金融、医疗、教育、制造业等领域的落地案例(含代码、流程图、Prompt示例与图表)
人工智能·spring·机器学习·金融·数据挖掘·prompt·流程图
代码欢乐豆2 小时前
scikit-learn零基础配置(含python、anaconda)
python·机器学习·scikit-learn
悠哉悠哉愿意2 小时前
【数学建模学习笔记】无监督聚类模型:分层聚类
笔记·python·学习·数学建模
北冥电磁电子智能3 小时前
江协科技STM32学习笔记补充之004
笔记·科技·学习
xz2024102****3 小时前
最大似然估计:损失函数的底层数学原理
人工智能·算法·机器学习·概率论
一个响当当的名号3 小时前
c++primer 个人学习总结-模板和泛型编程
开发语言·c++·学习