NARF(法线对齐的径向特征)

NARF 全称 normal aligned radial feature(法线对齐的径向特征) ,是一种为从深度图像中识别物体而提出的3D关键点检测和描述的算法,该算法由Bastian Steder和 Radu Bogdan Rusu等人于2010年在他们的文章《Point Feature Extraction on 3D Range Scans Taking into Account Object Boundaries》中首次提出。

NARF是基于深度图像的关键点提取算法,与普通的灰度图像不一样,深度图像中深度值发生跳变的地方往往就是图像中物体的边缘部分。因此NARF算法会首先进行边缘检测,然后再从中选出表面稳定但领域变化较大的边缘点作为关键点。

深度图像

边缘检测的结果

关键点提取的结果

为了找到边缘,在每个深度图(range image)上,给定查询点p,在以p为中心,s为边长的矩形窗格内,计算每个点到p的距离,并对距离的集合升序排列,得到集合

然后计算点p与上、下、左、右四个方向的邻域的距离

然后对点p在上、下、左、右四个方向打分,判断点p是否为边缘点

将分数值与阈值T(原文文给的参考值为0.8),对评分大于T的点进行非极大值抑制,就区分出了物体的边缘点和非边缘点

边缘提取示意图

接着,就可以借用边缘点信息进行NARF关键点探测了,探测的步骤如下: 首先遍历深度图像中的每一个点,计算每个点的主方向v,再计算根据领域信息确定点的强度因子I1和方向因子I2:

然后将强度因子和方向因子相乘便得到兴趣值I。 然后利用高斯核来平滑每个点的兴趣值。 最后设定阈值T2,当兴趣值I大于阈值时,即为NARF关键点。T2的参考值可以为0.5。

配准结果示意图

深度图像示意图

边缘点提取结果示意图

相关推荐
北京耐用通信5 分钟前
耐达讯自动化Profibus总线光纤中继器:破解石油化工分析仪器通讯难题
网络·人工智能·科技·物联网·网络协议·自动化·信息与通信
人工智能AI技术5 分钟前
GPT-5.2-Codex实战:用AI编程1小时完成分布式系统开发,附提示词模板
人工智能
香草泡芙6 分钟前
AI Agent 深度解析:原理、架构与未来应用浪潮
人工智能·深度学习·机器学习
桓峰基因7 分钟前
桓峰基因临床数据分析及机器学习预测模型构建教程
人工智能·机器学习·数据挖掘·数据分析
俊哥V7 分钟前
[本周深度看点]英伟达与物理 AI 的“ChatGPT 时刻”——从虚拟认知到物理世界理解的技术跃迁
人工智能·英伟达
aloha_78917 分钟前
langchain4j如何使用mcp
java·人工智能·python·langchain
yunhuibin18 分钟前
CNN基础学习
人工智能·python·深度学习·神经网络
Together_CZ21 分钟前
YOLO26模型今日发布,致力于打造端到端计算范式的端侧AI新标杆
人工智能·yolo·目标检测·ultralytics·yolo26·致力于打造端到端计算范式·端侧ai新标杆
2301_7657151429 分钟前
全球缺芯背景下,IDM模式如何引领传感器产业革新
人工智能·阿里云·idm
sali-tec30 分钟前
C# 基于OpenCv的视觉工作流-章11-高斯滤波
图像处理·人工智能·opencv·算法·计算机视觉