NARF(法线对齐的径向特征)

NARF 全称 normal aligned radial feature(法线对齐的径向特征) ,是一种为从深度图像中识别物体而提出的3D关键点检测和描述的算法,该算法由Bastian Steder和 Radu Bogdan Rusu等人于2010年在他们的文章《Point Feature Extraction on 3D Range Scans Taking into Account Object Boundaries》中首次提出。

NARF是基于深度图像的关键点提取算法,与普通的灰度图像不一样,深度图像中深度值发生跳变的地方往往就是图像中物体的边缘部分。因此NARF算法会首先进行边缘检测,然后再从中选出表面稳定但领域变化较大的边缘点作为关键点。

深度图像

边缘检测的结果

关键点提取的结果

为了找到边缘,在每个深度图(range image)上,给定查询点p,在以p为中心,s为边长的矩形窗格内,计算每个点到p的距离,并对距离的集合升序排列,得到集合

然后计算点p与上、下、左、右四个方向的邻域的距离

然后对点p在上、下、左、右四个方向打分,判断点p是否为边缘点

将分数值与阈值T(原文文给的参考值为0.8),对评分大于T的点进行非极大值抑制,就区分出了物体的边缘点和非边缘点

边缘提取示意图

接着,就可以借用边缘点信息进行NARF关键点探测了,探测的步骤如下: 首先遍历深度图像中的每一个点,计算每个点的主方向v,再计算根据领域信息确定点的强度因子I1和方向因子I2:

然后将强度因子和方向因子相乘便得到兴趣值I。 然后利用高斯核来平滑每个点的兴趣值。 最后设定阈值T2,当兴趣值I大于阈值时,即为NARF关键点。T2的参考值可以为0.5。

配准结果示意图

深度图像示意图

边缘点提取结果示意图

相关推荐
QBoson12 分钟前
量子赋能多智能体路径规划:破解无人机、自动驾驶的 “避撞难题”
人工智能·自动驾驶·无人机·量子计算
ar01238 小时前
AR远程协助作用
人工智能·ar
北京青翼科技8 小时前
PCIe接口-高速模拟采集—高性能计算卡-青翼科技高品质军工级数据采集板-打造专业工业核心板
图像处理·人工智能·fpga开发·信号处理·智能硬件
软件聚导航9 小时前
马年、我用AI写了个“打工了马” 小程序
人工智能·ui·微信小程序
陈天伟教授10 小时前
人工智能应用-机器听觉:7. 统计合成法
人工智能·语音识别
笨蛋不要掉眼泪10 小时前
Spring Boot集成LangChain4j:与大模型对话的极速入门
java·人工智能·后端·spring·langchain
昨夜见军贴061610 小时前
IACheck AI审核技术赋能消费认证:为智能宠物喂食器TELEC报告构筑智能合规防线
人工智能·宠物
DisonTangor10 小时前
阿里开源语音识别模型——Qwen3-ASR
人工智能·开源·语音识别
万事ONES10 小时前
ONES 签约北京高级别自动驾驶示范区专设国有运营平台——北京车网
人工智能·机器学习·自动驾驶
qyr678911 小时前
深度解析:3D细胞培养透明化试剂供应链与主要制造商分布
大数据·人工智能·3d·市场分析·市场报告·3d细胞培养·细胞培养