PyTorch中matmul函数的矩阵相乘原则和注意事项

PyTorch中matmul函数的矩阵相乘原则和注意事项

一、高维张量乘法规则

1. 选择乘法的维度: 选择最后两个维度进行乘
2. 维度匹配规则: 最后两个维度按照普通矩阵乘法计算
3. 广播机制: torch.matmul 函数支持广播机制,即在满足乘法维度匹配规则的前提下,可以通过扩展(广播)其他维度来实现矩阵相乘。这使得可以对不同形状的张量进行相乘。

4. 结果张量的形形状:

最后2维为矩阵乘法正常计算完成应该有的维度,而高维则以参与计算的两个矩阵中,维度更大的那个矩阵的维度为准。

为什么是这样,因为其实高维矩阵的乘法就是分别从高维中选取对应位置的一对矩阵(普通矩阵)相乘把高维都遍历完了,整个高维矩阵乘法也就完成了。

那么原参与计算的矩阵形状,高维有多大,计算结果就应该有多大(因为高维只遍历)

⭐⭐⭐一言以蔽之 :除最后两维外,每一维的分量数必须对应相等 (每个分量对应相乘) 或 有一方为1(broadcast-广播机制)

二、二维矩阵相乘

线性代数基本知识,就不多讲了

python 复制代码
import torch

# 创建两个二维矩阵
A = torch.tensor([[1, 2],
                  [3, 4]])
B = torch.tensor([[5, 6],
                  [7, 8]])

# 使用 matmul 进行二维矩阵相乘
C = torch.matmul(A, B)
print("二维矩阵相乘结果:")
print(C)

输出结果:

python 复制代码
二维矩阵相乘结果:
tensor([[19, 22],
        [43, 50]])

三、三维张量相乘

对于两个三维张量 A 和 B,我们可以选择其中的最后两个维度进行相乘。

python 复制代码
import torch

# 创建两个三维张量
A = torch.randn(2, 3, 4)
B = torch.randn(2, 4, 5)

# 使用 matmul 进行三维张量相乘
C = torch.matmul(A, B)
print("三维张量相乘结果的形状:")
print(C.shape)

输出结果:

复制代码
三维张量相乘结果的形状:
torch.Size([2, 3, 5])

在这个示例中,张量 A 的形状是 [2, 3, 4],张量 B 的形状是 [2, 4, 5],我们对最后两个维度进行了矩阵相乘,得到的结果张量 C 的形状是 [2, 3, 5]

四、三维张量广播相乘示例

python 复制代码
import torch

# 创建两个可以广播的张量
a = torch.randn(2, 3, 4)
b = torch.randn(4, 5)

# 使用 torch.matmul 进行广播机制的矩阵乘法
result = torch.matmul(a, b)
print("广播机制下的矩阵乘法结果的形状:")
print(result.sha

输出

python 复制代码
广播机制下的矩阵乘法结果的形状:
torch.Size([2, 3, 5])

五、高维张量相乘

最后,我们考虑更高维度的情况,例如四维张量。对于四维张量 A 和 B,我们选择最后两个维度进行相乘。

python 复制代码
# 创建两个四维张量
A = torch.randn(2, 3, 4, 5)
B = torch.randn(2, 3, 5, 6)

# 使用 matmul 进行四维张量相乘
C = torch.matmul(A, B)
print("四维张量相乘结果的形状:")
print(C.shape)

输出结果:

复制代码
四维张量相乘结果的形状:
torch.Size([2, 3, 4, 6])

在这个示例中,张量 A 的形状是 [2, 3, 4, 5],张量 B 的形状是 [2, 3, 5, 6],我们对最后两个维度进行了矩阵相乘,得到的结果张量 C 的形状是 [2, 3, 4, 6]

相关推荐
青瓷程序设计9 分钟前
【交通标志识别系统】python+深度学习+算法模型+Resnet算法+人工智能+2026计算机毕设项目
人工智能·python·深度学习
Mr.huang11 分钟前
RNN系列模型演进及其解决的问题
人工智能·rnn·lstm
智驱力人工智能15 分钟前
货车走快车道检测 高速公路安全治理的工程实践与价值闭环 高速公路货车占用小客车道抓拍系统 城市快速路货车违规占道AI识别
人工智能·opencv·算法·安全·yolo·目标检测·边缘计算
老百姓懂点AI19 分钟前
[RAG架构] 拒绝向量检索幻觉:智能体来了(西南总部)AI agent指挥官的GraphRAG实战与AI调度官的混合索引策略
人工智能·架构
ws20190720 分钟前
技术迭代与湾区赋能:AUTO TECH China 2026广州汽车零部件展的四大核心价值
人工智能·科技·汽车
源于花海27 分钟前
迁移学习简明手册——迁移学习相关资源汇总
人工智能·机器学习·迁移学习
aihuangwu29 分钟前
deepseek图表怎么导出
人工智能·ai·deepseek·ds随心转
Gofarlic_oms140 分钟前
通过Kisssoft API接口实现许可证管理自动化集成
大数据·运维·人工智能·分布式·架构·自动化
电商API&Tina41 分钟前
电商数据采集 API 接口 全维度解析(技术 + 商业 + 合规)
java·大数据·开发语言·数据库·人工智能·json
退休钓鱼选手1 小时前
[CommonAPI + vsomeip]通信 客户端 5
c++·人工智能·自动驾驶