PyTorch中matmul函数的矩阵相乘原则和注意事项

PyTorch中matmul函数的矩阵相乘原则和注意事项

一、高维张量乘法规则

1. 选择乘法的维度: 选择最后两个维度进行乘
2. 维度匹配规则: 最后两个维度按照普通矩阵乘法计算
3. 广播机制: torch.matmul 函数支持广播机制,即在满足乘法维度匹配规则的前提下,可以通过扩展(广播)其他维度来实现矩阵相乘。这使得可以对不同形状的张量进行相乘。

4. 结果张量的形形状:

最后2维为矩阵乘法正常计算完成应该有的维度,而高维则以参与计算的两个矩阵中,维度更大的那个矩阵的维度为准。

为什么是这样,因为其实高维矩阵的乘法就是分别从高维中选取对应位置的一对矩阵(普通矩阵)相乘把高维都遍历完了,整个高维矩阵乘法也就完成了。

那么原参与计算的矩阵形状,高维有多大,计算结果就应该有多大(因为高维只遍历)

⭐⭐⭐一言以蔽之 :除最后两维外,每一维的分量数必须对应相等 (每个分量对应相乘) 或 有一方为1(broadcast-广播机制)

二、二维矩阵相乘

线性代数基本知识,就不多讲了

python 复制代码
import torch

# 创建两个二维矩阵
A = torch.tensor([[1, 2],
                  [3, 4]])
B = torch.tensor([[5, 6],
                  [7, 8]])

# 使用 matmul 进行二维矩阵相乘
C = torch.matmul(A, B)
print("二维矩阵相乘结果:")
print(C)

输出结果:

python 复制代码
二维矩阵相乘结果:
tensor([[19, 22],
        [43, 50]])

三、三维张量相乘

对于两个三维张量 A 和 B,我们可以选择其中的最后两个维度进行相乘。

python 复制代码
import torch

# 创建两个三维张量
A = torch.randn(2, 3, 4)
B = torch.randn(2, 4, 5)

# 使用 matmul 进行三维张量相乘
C = torch.matmul(A, B)
print("三维张量相乘结果的形状:")
print(C.shape)

输出结果:

复制代码
三维张量相乘结果的形状:
torch.Size([2, 3, 5])

在这个示例中,张量 A 的形状是 [2, 3, 4],张量 B 的形状是 [2, 4, 5],我们对最后两个维度进行了矩阵相乘,得到的结果张量 C 的形状是 [2, 3, 5]

四、三维张量广播相乘示例

python 复制代码
import torch

# 创建两个可以广播的张量
a = torch.randn(2, 3, 4)
b = torch.randn(4, 5)

# 使用 torch.matmul 进行广播机制的矩阵乘法
result = torch.matmul(a, b)
print("广播机制下的矩阵乘法结果的形状:")
print(result.sha

输出

python 复制代码
广播机制下的矩阵乘法结果的形状:
torch.Size([2, 3, 5])

五、高维张量相乘

最后,我们考虑更高维度的情况,例如四维张量。对于四维张量 A 和 B,我们选择最后两个维度进行相乘。

python 复制代码
# 创建两个四维张量
A = torch.randn(2, 3, 4, 5)
B = torch.randn(2, 3, 5, 6)

# 使用 matmul 进行四维张量相乘
C = torch.matmul(A, B)
print("四维张量相乘结果的形状:")
print(C.shape)

输出结果:

复制代码
四维张量相乘结果的形状:
torch.Size([2, 3, 4, 6])

在这个示例中,张量 A 的形状是 [2, 3, 4, 5],张量 B 的形状是 [2, 3, 5, 6],我们对最后两个维度进行了矩阵相乘,得到的结果张量 C 的形状是 [2, 3, 4, 6]

相关推荐
whaosoft-143几秒前
51c自动驾驶~合集62
人工智能·机器学习·自动驾驶
梦梦c2 分钟前
检查数据集信息
人工智能·计算机视觉
OpenBayes3 分钟前
Open-AutoGLM 实现手机端自主操作;PhysDrive 数据集采集真实驾驶生理信号
人工智能·深度学习·机器学习·数据集·文档转换·图片生成·蛋白质设计
小北的AI科技分享4 分钟前
信息技术领域中AI智能体的核心特性及模块构成
人工智能
pusheng20258 分钟前
普晟传感直播预告 |重塑安全边界:储能与AI数据中心的锂电风险、气体探测技术革新与可量化风险管控
人工智能·安全
资源站shanxueit或com14 分钟前
智泊AI-AGI大模型全栈课12期【VIP】
人工智能
转转技术团队16 分钟前
转转大数据与AI——数据治理安全打标实践
大数据·人工智能·后端
哆啦叮当25 分钟前
VADv2 基于概率规划的端到端自动驾驶模型
人工智能·机器学习·自动驾驶
五月底_29 分钟前
GRPO参数详解
人工智能·深度学习·nlp·rl·grpo
沃达德软件30 分钟前
大数据治安防控中心
大数据·人工智能·信息可视化·数据挖掘·数据分析