【Python机器学习】自动化特征选择——基于模型的特征选择

基于模型的特征选择使用一个监督机器学习模型来判断每个特征的重要性,并且仅保留最重要的特征。用于特征学习的监督模型不需要与用于最终建模的模型相同。特征选择模型需要为每个特征提供某种重要性度量,以便用这个度量对特征进行排序。决策树和基于决策树的模型提供了feature_importances_属性,可以直接编码每个特征的重要性。线性模型系数的绝对值也可以用于表示特征的重要性。之前学到过,L1惩罚的线性模型学到的是稀疏系数,它只用到了特征的一个很小的子集。这可以被视为模型本身的一种特征选择形式,但也可以用作另一个模型选择特征的预处理步骤。

与单变量选择不同,基于模型的选择同时考虑所有特征,因此可以获取交互项(如果模型能获取他们的话),想要使用基于模型的特征选择,需要使用SelectFromModel变换器:

python 复制代码
from sklearn.feature_selection import SelectFromModel
from sklearn.ensemble import RandomForestClassifier

select=SelectFromModel(
    RandomForestClassifier(n_estimators=100,random_state=42),threshold='median'
)

SelectFromModel类选出重要性度量(由监督模型提供)大于给定阈值的所有特征。为了得到可以与单变量特征选择进行对比的结果,我们使用中位数作为阈值,这样就可以选择一半特征。我们用包含100颗树的随机森林分类器来计算特征重要性。这是一个相当复杂的模型,也比单变量测试要强大得多。下面,实际拟合模型:

python 复制代码
select.fit(X_train,y_train)
X_train_l1=select.transform(X_train)
print('训练集shape:{}'.format(X_train.shape))
print('训练集l1_shape:{}'.format(X_train_l1.shape))

可视化展示:

python 复制代码
mask=select.get_support()
plt.matshow(mask.reshape(1,-1),cmap='gray_r')
plt.xlabel('Sample index')
plt.show()

这次,除了两个原始特征,其他原始特征都被选中。由于我们指定了40个特征,所以也选择了一些噪声特征。

来看一下性能:

从结果上看,利用更好的特征选择,性能也得到了提高。

相关推荐
AI蜗牛之家3 小时前
Qwen系列之Qwen3解读:最强开源模型的细节拆解
人工智能·python
C++ 老炮儿的技术栈3 小时前
UDP 与 TCP 的区别是什么?
开发语言·c++·windows·算法·visual studio
王上上3 小时前
【论文阅读30】Bi-LSTM(2024)
论文阅读·人工智能·lstm
殇者知忧3 小时前
【论文笔记】若干矿井粉尘检测算法概述
深度学习·神经网络·算法·随机森林·机器学习·支持向量机·计算机视觉
whyeekkk4 小时前
python打卡第48天
开发语言·python
YunTM4 小时前
贝叶斯优化+LSTM+时序预测=Nature子刊!
人工智能·机器学习
mochensage5 小时前
C++信息学竞赛中常用函数的一般用法
java·c++·算法
舒一笑5 小时前
智能体革命:企业如何构建自主决策的AI代理?
人工智能
chengooooooo5 小时前
leetcode Top100 238. 除自身以外数组的乘积|数组系列
算法·leetcode
GUIQU.5 小时前
【每日一题 | 2025年6.2 ~ 6.8】第16届蓝桥杯部分偏简单题
算法·蓝桥杯·每日一题