论文辅导 | 基于贝叶斯优化-卷积神经网络-双向长短期记忆神经网络的锂电池健康状态评估

辅导文章

模型描述

准确估计电池健康状态是设备稳定运行的关键。针对当前健康状态研究中容量难以直接测量、估计模型调参费时等问题,提出基于多健康特征的贝叶斯优化(BO)算法优化卷积神经网络(CNN)与双向长短期记忆(BiLSTM)神经网络预测模型。基于NASA 公开锂电池数据,提取3 种健康特征。将CNN 与BiLSTM 结合,提高时间序列数据处理能力,加入BO 算法自动搜寻最优参数集,避免组合网络模型陷入局部最优,从而减少评估时间。对比分析相关神经网络模型,结果表明所提方法预测准确度最高,可有效估计锂电池的健康状态,平均绝对误差和方均根误差均在1%以内。


预测效果

相关推荐
AI营销资讯站2 分钟前
原圈科技AI营销内容生产体系助力企业降本提效新变革
大数据·人工智能
AI科技星3 分钟前
质量定义方程中条数概念的解析与经典例子计算
数据结构·人工智能·经验分享·算法·计算机视觉
啊阿狸不会拉杆3 分钟前
《数字图像处理》第8章-图像压缩和水印
图像处理·人工智能·算法·计算机视觉·数字图像处理
智航GIS4 分钟前
ArcGIS大师之路500技---034重采样算法选择
人工智能·算法·arcgis
~央千澈~4 分钟前
序章《程序员进化:AI 编程革命》——用 Cursor 驱动的游戏开发实战作者:卓伊凡
人工智能·ai编程
风途知识百科6 分钟前
专用气象设备 —— 光伏气象站与防爆气象站[特殊字符]!
人工智能
roman_日积跬步-终至千里7 分钟前
【计算机视觉18-2】语义理解-CNN架构设计_VGG_Inception_ResNet
人工智能·计算机视觉·cnn
摄影图7 分钟前
卫星插画推荐:星轨下的科技美学像素漫画图赏
人工智能·科技·aigc·插画
存储国产化前线7 分钟前
国产工业级存储进阶之路:从自主可控主控到可靠可用的全链路突围
大数据·人工智能·物联网