需求预测算法面试

面试了某公司的需求预测算法岗位,在这里做一个总结。

虽然我的经历也是乏善可陈,但是还是勉强去试一试水。

之前在一家生鲜电商的算法经历,

问:肉类课组的优化到底是什么方面。

我:扩大生鲜自营品牌的占有率,预测+组合优化计算原料

问:前置仓选品策略是什么?

就是类似推荐算法的思想,把商品在门店的周转率组合成矩阵,然后进行矩阵分解,每个店的特征可以用一个k维的向量来表示;然后两个向量的余弦相似度就可以表示门店的相似度了,然后推荐商品池里不在当前门店的商品。周转率可以表示为商品价值/ 周转天数,所以周转率越高,偏好程度越高。

问:在现在公司的预测算法用了哪些?

深度学习+机器学习的组合算法。深度学习主要是TFT,有一个类似LSTM的短期的时序模块和一个attention的长期时序模块。机器学习主要是GBDT的方法,把特征输入到模型里通过回归算法得到预测值。回答是用了lightgbm的框架,但是没有深入再问。

深度学习的样本用了多少?每天是几千万的样本,如果训练的话,用多少样本?

销量为0的样本占比很高,需要删除90%的样本。但是时间序列删除样本会导致序列中断。

1.销量还原,减少0样本数量。

2.深度学习时序模型,不用太多样本,用最近的样本,只选取最近2个月的。

深度学习和机器学习怎么融合?

1.观察预测值是否异常(和销量,自己同期预测值相比是否稳定)

2.取预测值加权平均,或者投票决定。

销量仿真系统是什么情况?

对模型的优化上线之前,需要经过仿真系统测试一下,看看仿真系统上的表现怎么样,如果业务指标不好就不上线。仿真系统会假设不存在的情况(比如未来天气预报没有雨,但仿真系统有雨)。但是仿真系统生成序列的具体算法没有问。

概率分布拟合库存是什么做法?按统计方法,用假设检验的方法检查是否符合某种分布。因为传统的安全库存公式都是按照正态分布来预估的,但是某些商品更符合其他分布(泊松、均匀分布)可以更贴近的方式去拟合。

是拟合销量分布还是销量与预测值的残差分布?我这里拟合了残差,因为最后还是用残差的分位数来算安全库存。

我们这里没有预测和补货两个系统,只有预测系统。因为最后的补货数值都是从预测端出来。可能还需要一个补货系统?

销量的联合预测?计算两种商品的共现频率,类似于jaccard index,划分一个阈值,高于阈值的商品使用联合预测方法。怎么做联合预测?没有反应过来,要仔细研究补充。

反问环节:业务指标和算法指标怎么看?如果有业务方的紧急需求,怎么响应?看起来公司对业务方还是有相对的独立性的,不是被牵着鼻子走。

相关推荐
天上的光24 分钟前
17.迁移学习
人工智能·机器学习·迁移学习
后台开发者Ethan30 分钟前
Python需要了解的一些知识
开发语言·人工智能·python
Xの哲學35 分钟前
Perf使用详解
linux·网络·网络协议·算法·架构
想不明白的过度思考者1 小时前
数据结构(排序篇)——七大排序算法奇幻之旅:从扑克牌到百亿数据的魔法整理术
数据结构·算法·排序算法
猫头虎1 小时前
猫头虎AI分享|一款Coze、Dify类开源AI应用超级智能体快速构建工具:FastbuildAI
人工智能·开源·prompt·github·aigc·ai编程·ai-native
小七rrrrr1 小时前
动态规划法 - 53. 最大子数组和
java·算法·动态规划
code小毛孩1 小时前
leetcodehot100 矩阵置零
算法
何妨重温wdys1 小时前
矩阵链相乘的最少乘法次数(动态规划解法)
c++·算法·矩阵·动态规划
重启的码农1 小时前
ggml 介绍 (6) 后端 (ggml_backend)
c++·人工智能·神经网络
重启的码农1 小时前
ggml介绍 (7)后端缓冲区 (ggml_backend_buffer)
c++·人工智能·神经网络