【计算机视觉系列实战教程 (实战01)】:图像锐化操作(并手写锐化操作)

文章目录


前言

提示:本文主要通过手写图像锐化算法来理解图像像素的遍历:

我们知道图像的高斯模糊的在实践中是使用高斯卷积核来卷积处理图像的,高斯卷积核"卷"图像的结果是被卷的图像区域变模糊了。而本文要讲解的图像锐化则是将图像更加清晰。


提示:以下是本篇文章正文内容,下面案例可供参考

1、什么是图像锐化

图像锐化是一种图像处理技术,旨在增强图像中边缘和细节的对比度,使其看起来更加清晰和鲜明。

2、使用卷积对图像进行锐化

(1).图像预处理

代码如下(示例):这里对图像先进行了高斯模糊处理,目的是去除噪音,防止锐化后加重噪音的影响

cpp 复制代码
cv::Mat imRead = cv::imread("xxx.jpeg");
cv::GaussianBlur(imRead, imRead, cv::Size(3,3),0);

(2).定义锐化卷积核

代码如下(示例):

cpp 复制代码
cv::Mat kernel_sharpen = (cv::Mat_<int>(3,3)<< 0, -1, 0,
											  -1, 5, -1,
											   0, -1, 0);

(3).对图像进行卷积操作(实现图像锐化)

代码如下(示例):

cpp 复制代码
cv::filter2D(imRead, imRead, imRead.type(), kernel_sharpen);

总代码如下:

cpp 复制代码
cv::Mat imRead = cv::imread(strPth01);
cv::GaussianBlur(imRead, imRead, cv::Size(3,3),0);
//定义锐化卷积核
cv::Mat kernel_sharpen = (cv::Mat_<int>(3, 3) << 0, -1, 0,
												-1, 5, -1,
												 0, -1, 0);
cv::Mat imSharpen;
cv::filter2D(imRead, imSharpen, imRead.type(), kernel_sharpen);

3、手动遍历实现图像锐化

手动遍历像素实现图像的锐化操作

下列函数使用了at访问图像像素,可根据自己的需求使用ptr、iterator等访问像素,代码如下(可直接使用):

cpp 复制代码
/*@author @还下着雨ZG
* @param[in] imSrc, 源图像,即待锐化的图像
* @param[out] imDst, 目标图像,即锐化后的图像
* @return int, 正表示锐化成功,负表示失败
*/
int ImgSharpenBySelf(const cv::Mat& imSrc, cv::Mat& imDst)
{
	if(imSrc.empty()) return -1;
	if(!imDst.empty()) imDst.release();
	if(imSrc.channels()==1)
	{
		cv::Mat imCopy;
		imSrc.convertTo(imCopy,CV_32SC1);
		imDst = imCopy.clone();
		for(int r=1; r<imCopy.rows-1; ++r)
		{
			for(int c=1; c<imCopy.cols-1; ++c)
			{
			    //这里使用int来访问图像像素元素
				imDst.at<int>(r,c) = 5*imCopy.at<int>(r,c)
									 - imCopy.at<int>(r-1,c) 
									 - imCopy.at<int>(r+1,c)
									 - imCopy.at<int>(r,c-1)
									 - imCopy.at<int>(r,c+1);
			}
		}
		//将目标图像(锐化后的图像)转为CV_8UC1
		imDst.convertTo(imDst, CV_8U);
	}
	else if(imSrc.channels()==3)
	{
		//转换图像格式便于计算(防止溢出)
		cv::Mat imCopy;
		imSrc.convertTo(imCopy,CV_32SC3);
		imDst = imCopy.clone();
	    //遍历图像并处理像素 new = 5*current - left - top - right - bottom
		for(int r=1; r<imCopy.rows-1; ++r)
		{
			for(int c=1; c<imCopy.cols-1; ++c)
			{
			    //这里使用int来访问图像像素元素
				imDst.at<cv::Vec3i>(r,c) = 5*imCopy.at<cv::Vec3i>(r,c)
										 - imCopy.at<cv::Vec3i>(r-1,c) 
										 - imCopy.at<cv::Vec3i>(r+1,c)
										 - imCopy.at<cv::Vec3i>(r,c-1)
										 - imCopy.at<cv::Vec3i>(r,c+1);
			}
		}
		//将目标图像(锐化后的图像)转为CV_8UC1
		imDst.convertTo(imDst, CV_8UC3);
	}
	else 
	{
		return -2;
	}
	return 1;
}

总结

1.使用opencv自带的卷积函数filter2D和卷积核kernel来锐化图像

2.手动遍历图像(灰度图像或彩色图像)实现图像的锐化操作

相关推荐
yunfuuwqi4 小时前
OpenClaw✅真·喂饭级教程:2026年OpenClaw(原Moltbot)一键部署+接入飞书最佳实践
运维·服务器·网络·人工智能·飞书·京东云
九河云5 小时前
5秒开服,你的应用部署还卡在“加载中”吗?
大数据·人工智能·安全·机器学习·华为云
人工智能培训5 小时前
具身智能视觉、触觉、力觉、听觉等信息如何实时对齐与融合?
人工智能·深度学习·大模型·transformer·企业数字化转型·具身智能
wenzhangli75 小时前
能力中心 (Agent SkillCenter):开启AI技能管理新时代
人工智能
后端小肥肠5 小时前
别再盲目抽卡了!Seedance 2.0 成本太高?教你用 Claude Code 100% 出片
人工智能·aigc·agent
每日新鲜事5 小时前
热销复盘:招商林屿缦岛203套售罄背后的客户逻辑分析
大数据·人工智能
Coder_Boy_6 小时前
基于SpringAI的在线考试系统-考试系统开发流程案例
java·数据库·人工智能·spring boot·后端
挖坑的张师傅6 小时前
对 AI Native 架构的一些思考
人工智能
LinQingYanga6 小时前
极客时间多模态大模型训练营毕业总结(2026年2月8日)
人工智能
pccai-vip6 小时前
过去24小时AI创业趋势分析
人工智能