【计算机视觉系列实战教程 (实战01)】:图像锐化操作(并手写锐化操作)

文章目录


前言

提示:本文主要通过手写图像锐化算法来理解图像像素的遍历:

我们知道图像的高斯模糊的在实践中是使用高斯卷积核来卷积处理图像的,高斯卷积核"卷"图像的结果是被卷的图像区域变模糊了。而本文要讲解的图像锐化则是将图像更加清晰。


提示:以下是本篇文章正文内容,下面案例可供参考

1、什么是图像锐化

图像锐化是一种图像处理技术,旨在增强图像中边缘和细节的对比度,使其看起来更加清晰和鲜明。

2、使用卷积对图像进行锐化

(1).图像预处理

代码如下(示例):这里对图像先进行了高斯模糊处理,目的是去除噪音,防止锐化后加重噪音的影响

cpp 复制代码
cv::Mat imRead = cv::imread("xxx.jpeg");
cv::GaussianBlur(imRead, imRead, cv::Size(3,3),0);

(2).定义锐化卷积核

代码如下(示例):

cpp 复制代码
cv::Mat kernel_sharpen = (cv::Mat_<int>(3,3)<< 0, -1, 0,
											  -1, 5, -1,
											   0, -1, 0);

(3).对图像进行卷积操作(实现图像锐化)

代码如下(示例):

cpp 复制代码
cv::filter2D(imRead, imRead, imRead.type(), kernel_sharpen);

总代码如下:

cpp 复制代码
cv::Mat imRead = cv::imread(strPth01);
cv::GaussianBlur(imRead, imRead, cv::Size(3,3),0);
//定义锐化卷积核
cv::Mat kernel_sharpen = (cv::Mat_<int>(3, 3) << 0, -1, 0,
												-1, 5, -1,
												 0, -1, 0);
cv::Mat imSharpen;
cv::filter2D(imRead, imSharpen, imRead.type(), kernel_sharpen);

3、手动遍历实现图像锐化

手动遍历像素实现图像的锐化操作

下列函数使用了at访问图像像素,可根据自己的需求使用ptr、iterator等访问像素,代码如下(可直接使用):

cpp 复制代码
/*@author @还下着雨ZG
* @param[in] imSrc, 源图像,即待锐化的图像
* @param[out] imDst, 目标图像,即锐化后的图像
* @return int, 正表示锐化成功,负表示失败
*/
int ImgSharpenBySelf(const cv::Mat& imSrc, cv::Mat& imDst)
{
	if(imSrc.empty()) return -1;
	if(!imDst.empty()) imDst.release();
	if(imSrc.channels()==1)
	{
		cv::Mat imCopy;
		imSrc.convertTo(imCopy,CV_32SC1);
		imDst = imCopy.clone();
		for(int r=1; r<imCopy.rows-1; ++r)
		{
			for(int c=1; c<imCopy.cols-1; ++c)
			{
			    //这里使用int来访问图像像素元素
				imDst.at<int>(r,c) = 5*imCopy.at<int>(r,c)
									 - imCopy.at<int>(r-1,c) 
									 - imCopy.at<int>(r+1,c)
									 - imCopy.at<int>(r,c-1)
									 - imCopy.at<int>(r,c+1);
			}
		}
		//将目标图像(锐化后的图像)转为CV_8UC1
		imDst.convertTo(imDst, CV_8U);
	}
	else if(imSrc.channels()==3)
	{
		//转换图像格式便于计算(防止溢出)
		cv::Mat imCopy;
		imSrc.convertTo(imCopy,CV_32SC3);
		imDst = imCopy.clone();
	    //遍历图像并处理像素 new = 5*current - left - top - right - bottom
		for(int r=1; r<imCopy.rows-1; ++r)
		{
			for(int c=1; c<imCopy.cols-1; ++c)
			{
			    //这里使用int来访问图像像素元素
				imDst.at<cv::Vec3i>(r,c) = 5*imCopy.at<cv::Vec3i>(r,c)
										 - imCopy.at<cv::Vec3i>(r-1,c) 
										 - imCopy.at<cv::Vec3i>(r+1,c)
										 - imCopy.at<cv::Vec3i>(r,c-1)
										 - imCopy.at<cv::Vec3i>(r,c+1);
			}
		}
		//将目标图像(锐化后的图像)转为CV_8UC1
		imDst.convertTo(imDst, CV_8UC3);
	}
	else 
	{
		return -2;
	}
	return 1;
}

总结

1.使用opencv自带的卷积函数filter2D和卷积核kernel来锐化图像

2.手动遍历图像(灰度图像或彩色图像)实现图像的锐化操作

相关推荐
weixin_387545644 分钟前
探索 GitHub Copilot:当 AI 成为你的贴身编码助手
人工智能·github·copilot
ZTLJQ6 分钟前
基于机器学习的三国时期诸葛亮北伐失败因素量化分析
人工智能·算法·机器学习
赵钰老师37 分钟前
【Deepseek、ChatGPT】智能气候前沿:AI Agent结合机器学习与深度学习在全球气候变化驱动因素预测中的应用
人工智能·python·深度学习·机器学习·数据分析
AIGC-Lison37 分钟前
【CSDN首发】Stable Diffusion从零到精通学习路线分享
人工智能·ai·stable diffusion·aigc·sd
AI绘画咪酱38 分钟前
Stable Diffusion|Ai赋能电商 Inpaint Anything
人工智能·ai·ai作画·stable diffusion·sd·ai教程·sd教程
ruokkk39 分钟前
Spring AI MCP 客户端实战:轻松连接高德地图等工具
人工智能
_一条咸鱼_40 分钟前
AI Agent 工作原理深入剖析
人工智能
飞哥数智坊41 分钟前
AI编程实战:数据大屏生成初探
人工智能
蚝油菜花43 分钟前
Cua:Mac用户狂喜!这个开源框架让AI直接接管你的电脑,快速实现AI自动化办公
人工智能·开源
蚝油菜花43 分钟前
AutoAgent:无需编程!接入DeepSeek用自然语言创建和部署AI智能体!港大开源框架让AI智能体开发变成填空题
人工智能·开源