机器学习Day8

贝叶斯分类器

概念

先验概率 :根据以往经验分析得到的概率,不需要样本数据
后验概率 :获得了证据和数据之后,对某个事件或参数的概率估计
联合概率:几个事件同时发生的概率

计算

后验概率 = (相似度 * 先验概率)/标淮化常量

相关推荐
周博洋K几秒前
SSI用量子计算来玩AI
人工智能·量子计算
IT猿手18 分钟前
2025高维多目标优化:基于导航变量的多目标粒子群优化算法(NMOPSO)的无人机三维路径规划,MATLAB代码
开发语言·人工智能·算法·机器学习·matlab·无人机·cocos2d
橙子小哥的代码世界28 分钟前
【机器学习】【KMeans聚类分析实战】用户分群聚类详解——SSE、CH 指数、SC全解析,实战电信客户分群案例
人工智能·python·机器学习·kmeans·数据科学·聚类算法·肘部法
k layc32 分钟前
【论文解读】《Training Large Language Models to Reason in a Continuous Latent Space》
人工智能·python·机器学习·语言模型·自然语言处理·大模型推理
代码猪猪傻瓜coding41 分钟前
【模块】 ASFF 模块
人工智能·深度学习
阿正的梦工坊1 小时前
Sliding Window Attention(滑动窗口注意力)解析: Pytorch实现并结合全局注意力(Global Attention )
人工智能·pytorch·python
rgb2gray1 小时前
GeoHD - 一种用于智慧城市热点探测的Python工具箱
人工智能·python·智慧城市
火车叼位1 小时前
5个Why、SWOT, 5W2H等方法论总结,让你的提示词更加精炼
人工智能
阿正的梦工坊1 小时前
PyTorch下三角矩阵生成函数torch.tril的深度解析
人工智能·pytorch·矩阵
说私域2 小时前
电商运营中私域流量的转化与变现:以开源AI智能名片2+1链动模式S2B2C商城小程序为例
人工智能·小程序·开源·流量运营