YOLO10 用分割数据集训练

1、 下载Funiture数据集

http://kaggle.com/datasets/nicolaasregnier/furniture

并生成数据配置文件 data.yaml

复制代码
import yaml
import os
dataDir ="你的工程路径/Furniture/sam_preds_training_set"
os.path.join(dataDir, 'train')
num_classes = 2
classes = ['Chair', 'Sofa']
file_dict = {
'train': os.path.join(dataDir, 'train'),
'val': os.path.join(dataDir, 'val'),
'test': os.path.join(dataDir, 'test'),
'nc': num_classes,
'names': classes
}
with open(os.path.join("./", 'data.yaml'), 'w+') as f:
    yaml.dump(file_dict, f)

二、训练

复制代码
from ultralytics import YOLO

# Load YOLOv10n model from scratch
model = YOLO("yolov10n.yaml").load("yolov10n.pt")



model.train(data="data.yaml", epochs=100, imgsz=640,freeze=22)

三、测试

复制代码
model = YOLO("生成的模型路径/ultralytics/runs/detect/train16/weights/best.pt") # 100epchs


res = model.predict("你的数据集路径/Furniture/sam_preds_training_set/test/images/Sofa--365-_jpg.rf.8ec5e13d87ce8491a9e8b4c999ea7330.jpg")
res[0].save("result-chair.jpg")

注意要训练100epochs 效果好

注意的是这个分割数据集来训练检测数据集,都可以,奇怪了

相关推荐
twilight_46921 分钟前
机器学习与模式识别——机器学习中的搜索算法
人工智能·python·机器学习
冰西瓜60030 分钟前
深度学习的数学原理(十)—— 权重如何自发分工
人工智能·深度学习·计算机视觉
niuniudengdeng38 分钟前
基于时序上下文编码的端到端无文本依赖语音分词模型
人工智能·数学·算法·概率论
Soonyang Zhang2 小时前
flashinfer attention kernel分析
人工智能·算子·推理框架
林籁泉韵72 小时前
2026年GEO服务商推荐:覆盖多场景适配,助力企业AI时代增长
人工智能
Sinosecu-OCR2 小时前
释放数字化力量:智能OCR识别如何重塑现代办公效率
大数据·人工智能
wukangjupingbb2 小时前
人工智能(AI)与类器官(Organoids)技术的结合
人工智能
正宗咸豆花3 小时前
物理AI革命:当算法走出屏幕,制造业如何被重新定义
人工智能·机器人·开源
冬奇Lab3 小时前
一天一个开源项目(第26篇):ZeroClaw - 零开销、全 Rust 的自主 AI 助手基础设施,与 OpenClaw 的关系与对比
人工智能·开源·资讯
lisw053 小时前
组合AI的核心思路与应用!
人工智能·科技·机器学习