YOLO10 用分割数据集训练

1、 下载Funiture数据集

http://kaggle.com/datasets/nicolaasregnier/furniture

并生成数据配置文件 data.yaml

复制代码
import yaml
import os
dataDir ="你的工程路径/Furniture/sam_preds_training_set"
os.path.join(dataDir, 'train')
num_classes = 2
classes = ['Chair', 'Sofa']
file_dict = {
'train': os.path.join(dataDir, 'train'),
'val': os.path.join(dataDir, 'val'),
'test': os.path.join(dataDir, 'test'),
'nc': num_classes,
'names': classes
}
with open(os.path.join("./", 'data.yaml'), 'w+') as f:
    yaml.dump(file_dict, f)

二、训练

复制代码
from ultralytics import YOLO

# Load YOLOv10n model from scratch
model = YOLO("yolov10n.yaml").load("yolov10n.pt")



model.train(data="data.yaml", epochs=100, imgsz=640,freeze=22)

三、测试

复制代码
model = YOLO("生成的模型路径/ultralytics/runs/detect/train16/weights/best.pt") # 100epchs


res = model.predict("你的数据集路径/Furniture/sam_preds_training_set/test/images/Sofa--365-_jpg.rf.8ec5e13d87ce8491a9e8b4c999ea7330.jpg")
res[0].save("result-chair.jpg")

注意要训练100epochs 效果好

注意的是这个分割数据集来训练检测数据集,都可以,奇怪了

相关推荐
JT8583967 分钟前
AI GEO 优化能否快速提升网站在搜索引擎的排名?
人工智能·搜索引擎
幂律智能9 分钟前
吾律——让普惠法律服务走进生活
人工智能·经验分享
IT_陈寒14 分钟前
Java性能优化:从这8个关键指标开始,让你的应用提速50%
前端·人工智能·后端
yzx99101318 分钟前
构建未来:深度学习、嵌入式与安卓开发的融合创新之路
android·人工智能·深度学习
非门由也29 分钟前
《sklearn机器学习——特征提取》
人工智能·机器学习·sklearn
机器学习之心1 小时前
基于CNN的航空发动机剩余寿命预测 (MATLAB实现)
人工智能·matlab·cnn
钝挫力PROGRAMER1 小时前
AI中的“预训练”是什么意思
人工智能
Godspeed Zhao2 小时前
自动驾驶中的传感器技术39——Radar(0)
人工智能·机器学习·自动驾驶·毫米波雷达
idealmu3 小时前
知识蒸馏(KD)详解一:认识一下BERT 模型
人工智能·深度学习·bert
Cathyqiii3 小时前
生成对抗网络(GAN)
人工智能·深度学习·计算机视觉