YOLO10 用分割数据集训练

1、 下载Funiture数据集

http://kaggle.com/datasets/nicolaasregnier/furniture

并生成数据配置文件 data.yaml

复制代码
import yaml
import os
dataDir ="你的工程路径/Furniture/sam_preds_training_set"
os.path.join(dataDir, 'train')
num_classes = 2
classes = ['Chair', 'Sofa']
file_dict = {
'train': os.path.join(dataDir, 'train'),
'val': os.path.join(dataDir, 'val'),
'test': os.path.join(dataDir, 'test'),
'nc': num_classes,
'names': classes
}
with open(os.path.join("./", 'data.yaml'), 'w+') as f:
    yaml.dump(file_dict, f)

二、训练

复制代码
from ultralytics import YOLO

# Load YOLOv10n model from scratch
model = YOLO("yolov10n.yaml").load("yolov10n.pt")



model.train(data="data.yaml", epochs=100, imgsz=640,freeze=22)

三、测试

复制代码
model = YOLO("生成的模型路径/ultralytics/runs/detect/train16/weights/best.pt") # 100epchs


res = model.predict("你的数据集路径/Furniture/sam_preds_training_set/test/images/Sofa--365-_jpg.rf.8ec5e13d87ce8491a9e8b4c999ea7330.jpg")
res[0].save("result-chair.jpg")

注意要训练100epochs 效果好

注意的是这个分割数据集来训练检测数据集,都可以,奇怪了

相关推荐
智源研究院官方账号4 分钟前
更强劲,更高效:智源研究院开源轻量级超长视频理解模型Video-XL-2
人工智能·开源
要努力啊啊啊28 分钟前
GQA(Grouped Query Attention):分组注意力机制的原理与实践《一》
论文阅读·人工智能·深度学习·语言模型·自然语言处理
m0_7482451743 分钟前
KrillinAI:视频跨语言传播的一站式AI解决方案
人工智能·音视频
原味奶茶_三分甜1 小时前
Qwen3高效微调
深度学习
说私域1 小时前
定制开发开源AI智能名片S2B2C商城小程序在无界零售中的应用与行业智能升级示范研究
人工智能·小程序·开源·零售
蹦蹦跳跳真可爱5891 小时前
计算机视觉处理----OpenCV(从摄像头采集视频、视频处理与视频录制)
人工智能·python·opencv·计算机视觉·音视频
Icoolkj1 小时前
微软推出 Bing Video Creator,免费助力用户轻松创作 AI 视频
人工智能·microsoft·音视频
s153351 小时前
9.RV1126-OPENCV 视频的膨胀和腐蚀
人工智能·opencv·计算机视觉
嘻嘻哈哈OK啦4 小时前
day40打卡
人工智能·深度学习·机器学习
yzx9910137 小时前
Python开发系统项目
人工智能·python·深度学习·django