YOLO10 用分割数据集训练

1、 下载Funiture数据集

http://kaggle.com/datasets/nicolaasregnier/furniture

并生成数据配置文件 data.yaml

复制代码
import yaml
import os
dataDir ="你的工程路径/Furniture/sam_preds_training_set"
os.path.join(dataDir, 'train')
num_classes = 2
classes = ['Chair', 'Sofa']
file_dict = {
'train': os.path.join(dataDir, 'train'),
'val': os.path.join(dataDir, 'val'),
'test': os.path.join(dataDir, 'test'),
'nc': num_classes,
'names': classes
}
with open(os.path.join("./", 'data.yaml'), 'w+') as f:
    yaml.dump(file_dict, f)

二、训练

复制代码
from ultralytics import YOLO

# Load YOLOv10n model from scratch
model = YOLO("yolov10n.yaml").load("yolov10n.pt")



model.train(data="data.yaml", epochs=100, imgsz=640,freeze=22)

三、测试

复制代码
model = YOLO("生成的模型路径/ultralytics/runs/detect/train16/weights/best.pt") # 100epchs


res = model.predict("你的数据集路径/Furniture/sam_preds_training_set/test/images/Sofa--365-_jpg.rf.8ec5e13d87ce8491a9e8b4c999ea7330.jpg")
res[0].save("result-chair.jpg")

注意要训练100epochs 效果好

注意的是这个分割数据集来训练检测数据集,都可以,奇怪了

相关推荐
学术小八43 分钟前
2025年人工智能、虚拟现实与交互设计国际学术会议
人工智能·交互·vr
仗剑_走天涯2 小时前
基于pytorch.nn模块实现线性模型
人工智能·pytorch·python·深度学习
cnbestec3 小时前
协作机器人UR7e与UR12e:轻量化设计与高负载能力助力“小而美”智造升级
人工智能·机器人·协作机器人·ur协作机器人·ur7e·ur12e
zskj_zhyl3 小时前
毫米波雷达守护银发安全:七彩喜跌倒检测仪重构居家养老防线
人工智能·安全·重构
gaosushexiangji4 小时前
利用sCMOS科学相机测量激光散射强度
大数据·人工智能·数码相机·计算机视觉
ai小鬼头5 小时前
AIStarter新版重磅来袭!永久订阅限时福利抢先看
人工智能·开源·github
说私域5 小时前
从品牌附庸到自我表达:定制开发开源AI智能名片S2B2C商城小程序赋能下的营销变革
人工智能·小程序
飞哥数智坊6 小时前
新版定价不够用,Cursor如何退回旧版定价
人工智能·cursor
12点一刻6 小时前
搭建自动化工作流:探寻解放双手的有效方案(2)
运维·人工智能·自动化·deepseek
未来之窗软件服务6 小时前
东方仙盟AI数据中间件使用教程:开启数据交互与自动化应用新时代——仙盟创梦IDE
运维·人工智能·自动化·仙盟创梦ide·东方仙盟·阿雪技术观