分解+降维+预测!多重创新!直接写核心!EMD-KPCA-Transformer多变量时间序列光伏功率预测

分解+降维+预测!多重创新!直接写核心!EMD-KPCA-Transformer多变量时间序列光伏功率预测

目录

效果一览





基本介绍

1.MATLAB实现EMD-KPCA-Transformer多变量时间序列光伏功率预测;

2.多变量时间序列预测 就是先emd把原输入全分解变成很多维作为输入KPCA降维 再输入Transformer预测 ;

3.运行环境Matlab2023b及以上,输出RMSE、R2、MAPE、MAE等多指标对比,

先运行main1_EMD,进行emd分解;再运行main2_KPCA降维;再运行main3_EMD_KPCA_Transformer建模预测。

注意:一种算法不是万能的,不同的数据集效果会有差别,后面的工作就是需要调整参数;

4.运行环境为Matlab2023b及以上;

5.数据集为excel,光伏数据集,输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测,所有文件放在一个文件夹;

6.命令窗口输出R2、RMSE、MAE、MAPE等多指标评价。

购&买后可加点击文章底部卡片博主咨询交流。注意:其他非官方渠道购&买的盗版代码不含模型咨询交流服务,大家注意甄别,谢谢。

程序设计

  • 完整程序和数据下载私信博主回复分解+降维+预测!多重创新!直接写核心!EMD-KPCA-Transformer多变量时间序列光伏功率预测
clike 复制代码
clc;
clear 
close all

%% Transformer预测
tic
load origin_data.mat
load emd_data.mat
load KPCA_data.mat

%% EMD-KPCA-Transformer预测
tic
disp('..........................................................................................................................................')
disp('EMD-KPCA-Transformer预测')
disp('..........................................................................................................................................')

data=[KPCA_data X(:,end)];

num_samples = length(data);    % 样本个数 
kim = 5;                       % 延时步长(kim个历史数据作为自变量)
zim =  1;                      % 跨zim个时间点进行预测
or_dim = size(data,2);
res=[];
%  重构数据集
for i = 1: num_samples - kim - zim + 1
    res(i, :) = [reshape(data(i: i + kim - 1,:), 1, kim*or_dim), data(i + kim + zim - 1,:)];
end


% 训练集和测试集划分
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度


P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128163536?spm=1001.2014.3001.5502

[2] https://blog.csdn.net/kjm13182345320/article/details/128151206?spm=1001.2014.3001.5502

相关推荐
醒了就刷牙19 小时前
transformer用作分类任务
深度学习·分类·transformer
deephub3 天前
LEC: 基于Transformer中间层隐藏状态的高效特征提取与内容安全分类方法
人工智能·深度学习·transformer·大语言模型·特征提取
宝贝儿好3 天前
【NLP】第七章:Transformer原理及实操
人工智能·深度学习·自然语言处理·transformer
Struart_R3 天前
CogVideoX: Text-to-Video Diffusion Models with An Expert Transformer 论文解读
人工智能·深度学习·计算机视觉·transformer·视频生成
AI程序猿人3 天前
三种Transformer模型中的注意力机制介绍及Pytorch实现:从自注意力到因果自注意力
人工智能·pytorch·深度学习·自然语言处理·大模型·transformer·llms
lalahappy4 天前
Swin transformer 论文阅读记录 & 代码分析
论文阅读·深度学习·transformer
赵钰老师4 天前
遥感影像目标检测:从CNN(Faster-RCNN)到Transformer(DETR
pytorch·python·深度学习·目标检测·机器学习·cnn·transformer
通信仿真实验室4 天前
BERT模型入门(1)BERT的基本概念
人工智能·深度学习·自然语言处理·bert·transformer
西西弗Sisyphus4 天前
使用Gradio编写大模型ollama客户端 -界面版
lora·大模型·transformer·qwen2-vl
凳子花❀4 天前
CNN和Transfomer介绍
人工智能·神经网络·cnn·transformer