Python使用总结之为什么列表生成式的内存开销比生成器表达式大?

Python使用总结之为什么列表生成式的内存开销比生成器表达式大?

  1. 列表生成式 ([x*3 for x in gen_AB()]):

    • 列表生成式会立即生成整个列表并将所有元素存储在内存中。
    • 这意味着它需要的内存量取决于生成的列表中元素的数量。
    • 例如,如果 gen_AB() 生成了 1000 个元素,[x*3 for x in gen_AB()] 会创建一个包含 1000 个元素的新列表,并将其全部存储在内存中。
  2. 生成器表达式 ((x*3 for x in gen_AB())):

    • 生成器表达式不会立即生成整个序列,而是返回一个生成器对象,该对象按需生成元素。
    • 这意味着它一次只生成一个元素,并且仅在需要时才生成下一个元素。
    • 生成器表达式的内存开销很小,因为它只需要存储生成器对象和计算当前元素所需的状态。
    • 例如,如果 gen_AB() 生成了 1000 个元素,(x*3 for x in gen_AB()) 不会立即生成这 1000 个元素,而是会在每次迭代时按需生成每个元素。

简而言之:

  • 列表生成式 在内存中存储所有生成的元素,内存开销大。
  • 生成器表达式 只在需要时生成元素,内存开销小。

因此,生成器表达式在处理大量数据或内存有限的情况下是更好的选择,因为它们具有更好的内存效率。

python 复制代码
# 列表生成式:立即生成所有元素并存储在内存中
list_comprehension = [x*3 for x in gen_AB()]

# 生成器表达式:按需生成元素,内存开销小
generator_expression = (x*3 for x in gen_AB())
相关推荐
weixin_贾9 分钟前
最新AI-Python机器学习与深度学习技术在植被参数反演中的核心技术应用
python·机器学习·植被参数·遥感反演
张槊哲19 分钟前
函数的定义与使用(python)
开发语言·python
船长@Quant23 分钟前
文档构建:Sphinx全面使用指南 — 实战篇
python·markdown·sphinx·文档构建
北辰浮光27 分钟前
[Mybatis-plus]
java·开发语言·mybatis
光而不耀@lgy1 小时前
C++初登门槛
linux·开发语言·网络·c++·后端
lkbhua莱克瓦241 小时前
用C语言实现——一个中缀表达式的计算器。支持用户输入和动画演示过程。
c语言·开发语言·数据结构·链表·学习方法·交友·计算器
Mr__Miss1 小时前
面试踩过的坑
java·开发语言
偶尔微微一笑1 小时前
AI网络渗透kali应用(gptshell)
linux·人工智能·python·自然语言处理·编辑器
啊丢_1 小时前
C++——Lambda表达式
开发语言·c++
Chh07152 小时前
《R语言SCI期刊论文绘图专题计划》大纲
开发语言·r语言