【Python机器学习】模型评估与改进——简单的网格搜索

为了提升模型的泛化性能,我们可以通过调参来实现。

在尝试调参之前,重要的是理解参数的含义,找到一个模型的重要参数(提供最佳泛化性能的参数)的取值是一项棘手的任务,但对于几乎所有模型和数据集来说都是必要的。由于这项任务如此常见,所以scikit-learn中有一些标准方法可以实现,其中最常用的方法就是网格搜索,它只要是指尝试我们关心的参数的所有可能组合。

考虑一个具有RBF(径向基函数)核的核SVM的例子,它在SVC类中实现。它有两个重要参数,:核宽度gamma和正则化参数C。假设我们希望尝试C和gamma都有6个不同的取值,所以总共有36中参数组合,设置表如下所示:

我们可以实现一个简单的网格搜索,在2个参数上使用for循环,对每种参数组合分别训练并评估一个分类器:

python 复制代码
from sklearn.svm import SVC
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split

iris=load_iris()

X_train,X_test,y_train,y_test=train_test_split(iris.data,iris.target,random_state=0)
print('训练集大小:{} 测试集大小:{}'.format(X_train.shape[0],X_test.shape[0]))

best_score=0

for gamma in [0.001,0.01,0.1,1,10,100]:
    for C in [0.001,0.01,0.1,1,10,100]:
        #对每种参数组合都训练一个SVC
        svm=SVC(gamma=gamma,C=C)
        svm.fit(X_train,y_train)
        score=svm.score(X_test,y_test)
        if score>best_score:
            best_score=score
            best_parameters={'C':C,'gamma':gamma}

print('最高精度:{:.2f}'.format(best_score))
print('最好参数组合:{}'.format(best_parameters))
相关推荐
墨染点香25 分钟前
LeetCode 刷题【126. 单词接龙 II】
算法·leetcode·职场和发展
aloha_7891 小时前
力扣hot100做题整理91-100
数据结构·算法·leetcode
lichong9511 小时前
Git 检出到HEAD 再修改提交commit 会消失解决方案
java·前端·git·python·github·大前端·大前端++
Tiny番茄1 小时前
31.下一个排列
数据结构·python·算法·leetcode
挂科是不可能出现的1 小时前
最长连续序列
数据结构·c++·算法
mit6.8241 小时前
[Agent可视化] 配置系统 | 实现AI模型切换 | 热重载机制 | fsnotify库(go)
开发语言·人工智能·golang
前端小L2 小时前
动态规划的“数学之魂”:从DP推演到质因数分解——巧解「只有两个键的键盘」
算法·动态规划
Percent_bigdata2 小时前
百分点科技发布中国首个AI原生GEO产品Generforce,助力品牌决胜AI搜索新时代
人工智能·科技·ai-native
Gloria_niki2 小时前
YOLOv4 学习总结
人工智能·计算机视觉·目标跟踪
小白学大数据2 小时前
实战:Python爬虫如何模拟登录与维持会话状态
开发语言·爬虫·python