【Python机器学习】模型评估与改进——简单的网格搜索

为了提升模型的泛化性能,我们可以通过调参来实现。

在尝试调参之前,重要的是理解参数的含义,找到一个模型的重要参数(提供最佳泛化性能的参数)的取值是一项棘手的任务,但对于几乎所有模型和数据集来说都是必要的。由于这项任务如此常见,所以scikit-learn中有一些标准方法可以实现,其中最常用的方法就是网格搜索,它只要是指尝试我们关心的参数的所有可能组合。

考虑一个具有RBF(径向基函数)核的核SVM的例子,它在SVC类中实现。它有两个重要参数,:核宽度gamma和正则化参数C。假设我们希望尝试C和gamma都有6个不同的取值,所以总共有36中参数组合,设置表如下所示:

我们可以实现一个简单的网格搜索,在2个参数上使用for循环,对每种参数组合分别训练并评估一个分类器:

python 复制代码
from sklearn.svm import SVC
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split

iris=load_iris()

X_train,X_test,y_train,y_test=train_test_split(iris.data,iris.target,random_state=0)
print('训练集大小:{} 测试集大小:{}'.format(X_train.shape[0],X_test.shape[0]))

best_score=0

for gamma in [0.001,0.01,0.1,1,10,100]:
    for C in [0.001,0.01,0.1,1,10,100]:
        #对每种参数组合都训练一个SVC
        svm=SVC(gamma=gamma,C=C)
        svm.fit(X_train,y_train)
        score=svm.score(X_test,y_test)
        if score>best_score:
            best_score=score
            best_parameters={'C':C,'gamma':gamma}

print('最高精度:{:.2f}'.format(best_score))
print('最好参数组合:{}'.format(best_parameters))
相关推荐
weixin_438077491 分钟前
CS336 Assignment 4 (data): Filtering Language Modeling Data 翻译和实现
人工智能·python·语言模型·自然语言处理
合方圆~小文2 分钟前
工业摄像头工作原理与核心特性
数据库·人工智能·模块测试
小郭团队2 分钟前
未来PLC会消失吗?会被嵌入式系统取代吗?
c语言·人工智能·python·嵌入式硬件·架构
yesyesido3 分钟前
智能文件格式转换器:文本/Excel与CSV无缝互转的在线工具
开发语言·python·excel
Aaron15883 分钟前
全频段SDR干扰源模块设计
人工智能·嵌入式硬件·算法·fpga开发·硬件架构·信息与通信·基带工程
摆烂咸鱼~4 分钟前
机器学习(9-2)
人工智能·机器学习
超的小宝贝5 分钟前
机器学习期末复习
深度学习·机器学习·强化学习
环黄金线HHJX.5 分钟前
拼音字母量子编程PQLAiQt架构”这一概念。结合上下文《QuantumTuan ⇆ QT:Qt》
开发语言·人工智能·qt·编辑器·量子计算
王夏奇6 分钟前
python在汽车电子行业中的应用1-基础知识概念
开发语言·python·汽车
子夜江寒6 分钟前
基于PyTorch的CBOW模型实现与词向量生成
pytorch·python