【pytorch11】高阶操作

高阶操作

  • Where
  • Gather

where

三个参数,第一个是condition,第二个参数是源头A,第三个参数是源头B,也就是说有两项数据A和B,C有可能来自于A也有可能来自于B,如果全部来自于A的话直接赋值给A,如果部分来自A的话可以例如C[0]=A[0],C[1]=B[1],如果C[0,0,1]=A[0,0,1],C[0,0,2]=B[0,0,2],C[0,0,3]=A[0,0,3]说明C的来源是比较乱的,没有一个特别好的规律,把这个乱的规则写在condition表里,condition的shape与A和B是一样的


为什么需要这个操作?

没有一个很好规则来帮助你赋值,简单的复制方法是不可行的,使用Python的逻辑控制比如for,比如用双重for循环加条件语句C[i,j]=A[i,j],但是存在一个问题,这段代码是运行在CPU上的就没有GPU的加速功能,因此要完成这样一个简单的分别采样或者分别取值的过程,照python代码的情况是用CPU控制的没有并行,生成一个condition,赋值语句就可以高度并行化

例如有一个场景,有一张表存储的是动物的名字[dog,cat,whale],但是pytoch是没有string类型的这里只是示意,通过神经网络得到相对编号的索引比如说第一个动物得到的索引是1那就意味着是cat,第二个动物对应的索引是0那就是对应的dog,第三个动物对应的索引是1,第四个动物得到的索引是2,即[1,0,1,2],表一共有3个种类,但是我们要查4次操作,所以查表的操作会生成[cat,dog,cat,whale]所以生成的shape和你提供要查找的shape是一样的,这个查表的操作是一个收集的操作,根据1收集索引为1的cat以此类推,因此这就是gather设计的初衷,gather([dog,cat,whale],dim=0,[1,0,1,2]),通过这三个参数就可以很好的生成查表的操作,pytorch矩阵运算没有这种操作可以完成这个功能,因此gather设计为了GPU的方式实现这个功能


相关推荐
lyx33136967591 天前
#深度学习基础:神经网络基础与PyTorch
pytorch·深度学习·神经网络·参数初始化
递归不收敛1 天前
吴恩达机器学习课程(PyTorch 适配)学习笔记:3.3 推荐系统全面解析
pytorch·学习·机器学习
JJJJ_iii1 天前
【深度学习03】神经网络基本骨架、卷积、池化、非线性激活、线性层、搭建网络
网络·人工智能·pytorch·笔记·python·深度学习·神经网络
JJJJ_iii1 天前
【深度学习05】PyTorch:完整的模型训练套路
人工智能·pytorch·python·深度学习
荼蘼1 天前
使用 Flask 实现本机 PyTorch 模型部署:从服务端搭建到客户端调用
人工智能·pytorch·python
罗橙7号2 天前
【pyTorch】关于PyTorch的高级索引机制理解
人工智能·pytorch·python
递归不收敛2 天前
吴恩达机器学习课程(PyTorch适配)学习笔记:1.5 决策树与集成学习
pytorch·学习·机器学习
kalvin_y_liu2 天前
PyTorch、ONNX Runtime、Hugging Face、NVIDIA Triton 和 LangChain 五个概念的关系详解
人工智能·pytorch·langchain
递归不收敛2 天前
吴恩达机器学习课程(PyTorch 适配)学习笔记大纲
pytorch·学习·机器学习
递归不收敛2 天前
吴恩达机器学习课程(PyTorch适配)学习笔记:2.4 激活函数与多类别处理
pytorch·学习·机器学习