【pytorch11】高阶操作

高阶操作

  • Where
  • Gather

where

三个参数,第一个是condition,第二个参数是源头A,第三个参数是源头B,也就是说有两项数据A和B,C有可能来自于A也有可能来自于B,如果全部来自于A的话直接赋值给A,如果部分来自A的话可以例如C[0]=A[0],C[1]=B[1],如果C[0,0,1]=A[0,0,1],C[0,0,2]=B[0,0,2],C[0,0,3]=A[0,0,3]说明C的来源是比较乱的,没有一个特别好的规律,把这个乱的规则写在condition表里,condition的shape与A和B是一样的


为什么需要这个操作?

没有一个很好规则来帮助你赋值,简单的复制方法是不可行的,使用Python的逻辑控制比如for,比如用双重for循环加条件语句C[i,j]=A[i,j],但是存在一个问题,这段代码是运行在CPU上的就没有GPU的加速功能,因此要完成这样一个简单的分别采样或者分别取值的过程,照python代码的情况是用CPU控制的没有并行,生成一个condition,赋值语句就可以高度并行化

例如有一个场景,有一张表存储的是动物的名字[dog,cat,whale],但是pytoch是没有string类型的这里只是示意,通过神经网络得到相对编号的索引比如说第一个动物得到的索引是1那就意味着是cat,第二个动物对应的索引是0那就是对应的dog,第三个动物对应的索引是1,第四个动物得到的索引是2,即[1,0,1,2],表一共有3个种类,但是我们要查4次操作,所以查表的操作会生成[cat,dog,cat,whale]所以生成的shape和你提供要查找的shape是一样的,这个查表的操作是一个收集的操作,根据1收集索引为1的cat以此类推,因此这就是gather设计的初衷,gather([dog,cat,whale],dim=0,[1,0,1,2]),通过这三个参数就可以很好的生成查表的操作,pytorch矩阵运算没有这种操作可以完成这个功能,因此gather设计为了GPU的方式实现这个功能


相关推荐
baby_hua11 小时前
20251024_PyTorch深度学习快速入门教程
人工智能·pytorch·深度学习
hopsky18 小时前
经典Transformer的PyTorch实现
pytorch·深度学习·transformer
brave and determined19 小时前
CANN训练营 学习(day7)昇腾AI训练全流程实战:从模型迁移到性能优化的深度指南
pytorch·ai·ai训练·昇腾ai·msprobe·模型性能调优·训练配置
baby_hua19 小时前
20251011_Pytorch从入门到精通
人工智能·pytorch·python
道199320 小时前
PyTorch 高级进阶教程之深度实战实例(四)
人工智能·pytorch·python
Francek Chen21 小时前
【自然语言处理】应用02:情感分析:使用循环神经网络
人工智能·pytorch·rnn·深度学习·神经网络·自然语言处理
拾贰_C21 小时前
【pytorch | torchvision | datasets】ImageFolder()类
人工智能·pytorch·python
Blossom.1181 天前
Transformer时序预测实战:用PyTorch构建股价预测模型
运维·人工智能·pytorch·python·深度学习·自动化·transformer
baby_hua1 天前
20251031_三天速通PyTorch
人工智能·pytorch·python
weixin_404679311 天前
pytorch nn.Parameter self.register_parameter() 区别
人工智能·pytorch·python·深度学习·机器学习