【pytorch11】高阶操作

高阶操作

  • Where
  • Gather

where

三个参数,第一个是condition,第二个参数是源头A,第三个参数是源头B,也就是说有两项数据A和B,C有可能来自于A也有可能来自于B,如果全部来自于A的话直接赋值给A,如果部分来自A的话可以例如C[0]=A[0],C[1]=B[1],如果C[0,0,1]=A[0,0,1],C[0,0,2]=B[0,0,2],C[0,0,3]=A[0,0,3]说明C的来源是比较乱的,没有一个特别好的规律,把这个乱的规则写在condition表里,condition的shape与A和B是一样的


为什么需要这个操作?

没有一个很好规则来帮助你赋值,简单的复制方法是不可行的,使用Python的逻辑控制比如for,比如用双重for循环加条件语句C[i,j]=A[i,j],但是存在一个问题,这段代码是运行在CPU上的就没有GPU的加速功能,因此要完成这样一个简单的分别采样或者分别取值的过程,照python代码的情况是用CPU控制的没有并行,生成一个condition,赋值语句就可以高度并行化

例如有一个场景,有一张表存储的是动物的名字[dog,cat,whale],但是pytoch是没有string类型的这里只是示意,通过神经网络得到相对编号的索引比如说第一个动物得到的索引是1那就意味着是cat,第二个动物对应的索引是0那就是对应的dog,第三个动物对应的索引是1,第四个动物得到的索引是2,即[1,0,1,2],表一共有3个种类,但是我们要查4次操作,所以查表的操作会生成[cat,dog,cat,whale]所以生成的shape和你提供要查找的shape是一样的,这个查表的操作是一个收集的操作,根据1收集索引为1的cat以此类推,因此这就是gather设计的初衷,gather([dog,cat,whale],dim=0,[1,0,1,2]),通过这三个参数就可以很好的生成查表的操作,pytorch矩阵运算没有这种操作可以完成这个功能,因此gather设计为了GPU的方式实现这个功能


相关推荐
誉鏐7 小时前
PyTorch复现线性模型
人工智能·pytorch·python
牙牙要健康9 小时前
【目标检测】【深度学习】【Pytorch版本】YOLOV3模型算法详解
pytorch·深度学习·目标检测
誉鏐11 小时前
PyTorch复现逻辑回归
人工智能·pytorch·逻辑回归
意.远12 小时前
在PyTorch中使用GPU加速:从基础操作到模型部署
人工智能·pytorch·python·深度学习
byxdaz21 小时前
PyTorch中Linear全连接层
pytorch
Start_Present21 小时前
Pytorch 第十二回:循环神经网络——LSTM模型
pytorch·rnn·神经网络·数据分析·lstm
船长@Quant1 天前
PyTorch量化进阶教程:第六章 模型部署与生产化
pytorch·python·深度学习·transformer·量化交易·sklearn·ta-lib
byxdaz1 天前
PyTorch中卷积层torch.nn.Conv2d
pytorch
进取星辰1 天前
PyTorch 深度学习实战(32):多模态学习与CLIP模型
pytorch·深度学习·学习
带娃的IT创业者1 天前
《Python实战进阶》No39:模型部署——TensorFlow Serving 与 ONNX
pytorch·python·tensorflow·持续部署