利用YOLOv8识别自定义模型

一、背景介绍

最近项目需要识别自定义物品,于是学习利用YOLOv8算法,实现物品识别。由于物体类别不再常规模型中,因此需要自己训练相应的模型,特此记录模型训练的过程。

二、训练模型的步骤

1.拍照获取训练图片(训练图片越多越好)

2.将图片进行处理获得数据集:

给图片打标签,并完成数据集分割。按照验证情况,训练集越多,最终的模型验证结果越好。

深度相机识别物体------实现数据集准备与数据集分割-CSDN博客

3.训练模型:

用以下代码进行模型训练,epochs表示的是迭代次数,imgsz表示的是图像大小。

模型训练前,需要先配置相应的文件,配置文件test_data.yaml如下:

python 复制代码
# 模型训练时的配置文件,说明了文件训练的地址和

# path: C:\Users\82370\.conda\envs\Ayolo8\Lib\site-packages\ultralytics\dataset 
train: C:\Users\82370\.conda\envs\Ayolo8\Lib\site-packages\ultralytics\dataset\train # train 文件夹
val: C:\Users\82370\.conda\envs\Ayolo8\Lib\site-packages\ultralytics\dataset\val # val 文件夹
test: # test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794

nc: 2  # 类别数目
# Classes
names: [Sumblock, Barbie]
  #0: Sunblock
  #1: Barbie

模型训练文件train_model,py 如下:

python 复制代码
# 用于训练自定义模型的代码文件
from ultralytics import YOLO
import os
os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE' # 这里是用于解决报错
# load a model 加载模型
model = YOLO('yolov8n.pt')

# train the model 训练模型
results = model.train(data='test_data.yaml', epochs=300, imgsz=640)

# 模型验证
model.val()

注意,运行训练模型文件时,需要先在命令行执行cd C:\Users\82370\.conda\envs\Ayolo8\Lib\site-packages\ultralytics\dataset ,进入到test_data.yaml配置文件所在文件夹。

训练过程示意图:

下图为训练结果储存位置,其中best为训练出的模型

4. 利用图片对相应的模型进行验证

相应Yolo_test.py代码如下

python 复制代码
from ultralytics import YOLO

model =YOLO(r'C:\Users\82370\.conda\envs\Ayolo8\Lib\site-packages\ultralytics\dataset\runs\detect\train\weights\best.pt')
model.predict(r'E:\T\TE1.jpg',save=True)
model.predict(r'E:\T\testa.jpg',save=True)
model.predict(r'E:\T\ts.jpg',save=True)

验证结果如下:

相关推荐
天***889638 分钟前
在线教育小程序定制开发,知识付费系统AI问答网课录播APP
人工智能·小程序
qq7422349842 小时前
VitePress静态网站从零搭建到GitHub Pages部署一站式指南和DeepWiki:AI 驱动的下一代代码知识平台
人工智能·python·vue·github·vitepress·wiki
式5162 小时前
线性代数(五)向量空间与子空间
人工智能·线性代数·机器学习
yiersansiwu123d8 小时前
AI伦理治理:在创新与规范之间寻找平衡之道
人工智能
程途拾光1588 小时前
AI 生成内容的伦理边界:深度伪造与信息真实性的保卫战
人工智能
趣味科技v8 小时前
亚马逊云科技储瑞松:AI智能体正在重塑未来工作模式
人工智能·科技
GEO AI搜索优化助手8 小时前
GEO生态重构:生成式引擎优化如何重塑信息传播链
人工智能·搜索引擎·生成式引擎优化·ai优化·geo搜索优化
爱笑的眼睛118 小时前
GraphQL:从数据查询到应用架构的范式演进
java·人工智能·python·ai
江上鹤.1488 小时前
Day40 复习日
人工智能·深度学习·机器学习
QYZL_AIGC8 小时前
全域众链以需求为基、政策为翼,创AI + 实体的可行之路
人工智能