利用YOLOv8识别自定义模型

一、背景介绍

最近项目需要识别自定义物品,于是学习利用YOLOv8算法,实现物品识别。由于物体类别不再常规模型中,因此需要自己训练相应的模型,特此记录模型训练的过程。

二、训练模型的步骤

1.拍照获取训练图片(训练图片越多越好)

2.将图片进行处理获得数据集:

给图片打标签,并完成数据集分割。按照验证情况,训练集越多,最终的模型验证结果越好。

深度相机识别物体------实现数据集准备与数据集分割-CSDN博客

3.训练模型:

用以下代码进行模型训练,epochs表示的是迭代次数,imgsz表示的是图像大小。

模型训练前,需要先配置相应的文件,配置文件test_data.yaml如下:

python 复制代码
# 模型训练时的配置文件,说明了文件训练的地址和

# path: C:\Users\82370\.conda\envs\Ayolo8\Lib\site-packages\ultralytics\dataset 
train: C:\Users\82370\.conda\envs\Ayolo8\Lib\site-packages\ultralytics\dataset\train # train 文件夹
val: C:\Users\82370\.conda\envs\Ayolo8\Lib\site-packages\ultralytics\dataset\val # val 文件夹
test: # test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794

nc: 2  # 类别数目
# Classes
names: [Sumblock, Barbie]
  #0: Sunblock
  #1: Barbie

模型训练文件train_model,py 如下:

python 复制代码
# 用于训练自定义模型的代码文件
from ultralytics import YOLO
import os
os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE' # 这里是用于解决报错
# load a model 加载模型
model = YOLO('yolov8n.pt')

# train the model 训练模型
results = model.train(data='test_data.yaml', epochs=300, imgsz=640)

# 模型验证
model.val()

注意,运行训练模型文件时,需要先在命令行执行cd C:\Users\82370\.conda\envs\Ayolo8\Lib\site-packages\ultralytics\dataset ,进入到test_data.yaml配置文件所在文件夹。

训练过程示意图:

下图为训练结果储存位置,其中best为训练出的模型

4. 利用图片对相应的模型进行验证

相应Yolo_test.py代码如下

python 复制代码
from ultralytics import YOLO

model =YOLO(r'C:\Users\82370\.conda\envs\Ayolo8\Lib\site-packages\ultralytics\dataset\runs\detect\train\weights\best.pt')
model.predict(r'E:\T\TE1.jpg',save=True)
model.predict(r'E:\T\testa.jpg',save=True)
model.predict(r'E:\T\ts.jpg',save=True)

验证结果如下:

相关推荐
safestar201220 分钟前
n8n 架构深度解构:从设计哲学到企业级实践
人工智能·ai编程
喵手22 分钟前
AI在自动化与机器人技术中的前沿应用
人工智能·机器人·自动化
一只乔哇噻40 分钟前
java后端工程师+AI大模型进修ing(研一版‖day55)
人工智能
小毅&Nora1 小时前
【AI微服务】【Spring AI Alibaba】② Agent 深度实战:构建可记忆、可拦截、可流式的智能体系统
人工智能·微服务·spring-ai
陈天伟教授2 小时前
基于学习的人工智能(7)机器学习基本框架
人工智能·学习
千里念行客2402 小时前
昂瑞微正式启动科创板IPO发行
人工智能·科技·信息与通信·射频工程
撸码猿2 小时前
《Python AI入门》第10章 拥抱AIGC——OpenAI API调用与Prompt工程实战
人工智能·python·aigc
双翌视觉3 小时前
双翌全自动影像测量仪:以微米精度打造智能化制造
人工智能·机器学习·制造
编程小白_正在努力中4 小时前
神经网络深度解析:从神经元到深度学习的进化之路
人工智能·深度学习·神经网络·机器学习
无风听海4 小时前
神经网络之经验风险最小化
人工智能·深度学习·神经网络