利用YOLOv8识别自定义模型

一、背景介绍

最近项目需要识别自定义物品,于是学习利用YOLOv8算法,实现物品识别。由于物体类别不再常规模型中,因此需要自己训练相应的模型,特此记录模型训练的过程。

二、训练模型的步骤

1.拍照获取训练图片(训练图片越多越好)

2.将图片进行处理获得数据集:

给图片打标签,并完成数据集分割。按照验证情况,训练集越多,最终的模型验证结果越好。

深度相机识别物体------实现数据集准备与数据集分割-CSDN博客

3.训练模型:

用以下代码进行模型训练,epochs表示的是迭代次数,imgsz表示的是图像大小。

模型训练前,需要先配置相应的文件,配置文件test_data.yaml如下:

python 复制代码
# 模型训练时的配置文件,说明了文件训练的地址和

# path: C:\Users\82370\.conda\envs\Ayolo8\Lib\site-packages\ultralytics\dataset 
train: C:\Users\82370\.conda\envs\Ayolo8\Lib\site-packages\ultralytics\dataset\train # train 文件夹
val: C:\Users\82370\.conda\envs\Ayolo8\Lib\site-packages\ultralytics\dataset\val # val 文件夹
test: # test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794

nc: 2  # 类别数目
# Classes
names: [Sumblock, Barbie]
  #0: Sunblock
  #1: Barbie

模型训练文件train_model,py 如下:

python 复制代码
# 用于训练自定义模型的代码文件
from ultralytics import YOLO
import os
os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE' # 这里是用于解决报错
# load a model 加载模型
model = YOLO('yolov8n.pt')

# train the model 训练模型
results = model.train(data='test_data.yaml', epochs=300, imgsz=640)

# 模型验证
model.val()

注意,运行训练模型文件时,需要先在命令行执行cd C:\Users\82370\.conda\envs\Ayolo8\Lib\site-packages\ultralytics\dataset ,进入到test_data.yaml配置文件所在文件夹。

训练过程示意图:

下图为训练结果储存位置,其中best为训练出的模型

4. 利用图片对相应的模型进行验证

相应Yolo_test.py代码如下

python 复制代码
from ultralytics import YOLO

model =YOLO(r'C:\Users\82370\.conda\envs\Ayolo8\Lib\site-packages\ultralytics\dataset\runs\detect\train\weights\best.pt')
model.predict(r'E:\T\TE1.jpg',save=True)
model.predict(r'E:\T\testa.jpg',save=True)
model.predict(r'E:\T\ts.jpg',save=True)

验证结果如下:

相关推荐
之歆9 小时前
Spring AI入门到实战到原理源码-MCP
java·人工智能·spring
知乎的哥廷根数学学派9 小时前
面向可信机械故障诊断的自适应置信度惩罚深度校准算法(Pytorch)
人工智能·pytorch·python·深度学习·算法·机器学习·矩阵
且去填词9 小时前
DeepSeek :基于 Schema 推理与自愈机制的智能 ETL
数据仓库·人工智能·python·语言模型·etl·schema·deepseek
待续3019 小时前
订阅了 Qoder 之后,我想通过这篇文章分享一些个人使用心得和感受。
人工智能
weixin_397578029 小时前
人工智能发展历史
人工智能
强盛小灵通专卖员9 小时前
基于深度学习的山体滑坡检测科研辅导:从论文实验到系统落地的完整思路
人工智能·深度学习·sci·小论文·山体滑坡
OidEncoder9 小时前
从 “粗放清扫” 到 “毫米级作业”,编码器重塑环卫机器人新能力
人工智能·自动化·智慧城市
Hcoco_me10 小时前
大模型面试题61:Flash Attention中online softmax(在线softmax)的实现方式
人工智能·深度学习·自然语言处理·transformer·vllm
哥布林学者10 小时前
吴恩达深度学习课程五:自然语言处理 第一周:循环神经网络 (七)双向 RNN 与深层 RNN
深度学习·ai
阿部多瑞 ABU10 小时前
`chenmo` —— 可编程元叙事引擎 V2.3+
linux·人工智能·python·ai写作