利用YOLOv8识别自定义模型

一、背景介绍

最近项目需要识别自定义物品,于是学习利用YOLOv8算法,实现物品识别。由于物体类别不再常规模型中,因此需要自己训练相应的模型,特此记录模型训练的过程。

二、训练模型的步骤

1.拍照获取训练图片(训练图片越多越好)

2.将图片进行处理获得数据集:

给图片打标签,并完成数据集分割。按照验证情况,训练集越多,最终的模型验证结果越好。

深度相机识别物体------实现数据集准备与数据集分割-CSDN博客

3.训练模型:

用以下代码进行模型训练,epochs表示的是迭代次数,imgsz表示的是图像大小。

模型训练前,需要先配置相应的文件,配置文件test_data.yaml如下:

python 复制代码
# 模型训练时的配置文件,说明了文件训练的地址和

# path: C:\Users\82370\.conda\envs\Ayolo8\Lib\site-packages\ultralytics\dataset 
train: C:\Users\82370\.conda\envs\Ayolo8\Lib\site-packages\ultralytics\dataset\train # train 文件夹
val: C:\Users\82370\.conda\envs\Ayolo8\Lib\site-packages\ultralytics\dataset\val # val 文件夹
test: # test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794

nc: 2  # 类别数目
# Classes
names: [Sumblock, Barbie]
  #0: Sunblock
  #1: Barbie

模型训练文件train_model,py 如下:

python 复制代码
# 用于训练自定义模型的代码文件
from ultralytics import YOLO
import os
os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE' # 这里是用于解决报错
# load a model 加载模型
model = YOLO('yolov8n.pt')

# train the model 训练模型
results = model.train(data='test_data.yaml', epochs=300, imgsz=640)

# 模型验证
model.val()

注意,运行训练模型文件时,需要先在命令行执行cd C:\Users\82370\.conda\envs\Ayolo8\Lib\site-packages\ultralytics\dataset ,进入到test_data.yaml配置文件所在文件夹。

训练过程示意图:

下图为训练结果储存位置,其中best为训练出的模型

4. 利用图片对相应的模型进行验证

相应Yolo_test.py代码如下

python 复制代码
from ultralytics import YOLO

model =YOLO(r'C:\Users\82370\.conda\envs\Ayolo8\Lib\site-packages\ultralytics\dataset\runs\detect\train\weights\best.pt')
model.predict(r'E:\T\TE1.jpg',save=True)
model.predict(r'E:\T\testa.jpg',save=True)
model.predict(r'E:\T\ts.jpg',save=True)

验证结果如下:

相关推荐
百胜软件@百胜软件35 分钟前
重塑零售未来:百胜智能中台+胜券AI,赋能品牌零售撬动3100亿增量市场
大数据·人工智能·零售
Shawn_Shawn6 小时前
人工智能入门概念介绍
人工智能
极限实验室6 小时前
程序员爆哭!我们让 COCO AI 接管 GitLab 审查后,团队直接起飞:连 CTO 都说“这玩意儿比人靠谱多了
人工智能·gitlab
Maynor9967 小时前
Z-Image: 100% Free AI Image Generator
人工智能
爬点儿啥8 小时前
[Ai Agent] 10 MCP基础:快速编写你自己的MCP服务器(Server)
人工智能·ai·langchain·agent·transport·mcp
张人玉8 小时前
百度 AI 图像识别 WinForms 应用代码分析笔记
人工智能·笔记·百度
测试人社区-小明8 小时前
智能弹性伸缩算法在测试环境中的实践与验证
人工智能·测试工具·算法·机器学习·金融·机器人·量子计算
Spring AI学习8 小时前
Spring AI深度解析(9/50):可观测性与监控体系实战
java·人工智能·spring
罗西的思考9 小时前
【Agent】MemOS 源码笔记---(5)---记忆分类
人工智能·深度学习·算法
dajun1811234569 小时前
反 AI 生成技术兴起:如何识别与过滤海量的 AI 伪造内容?
人工智能