利用YOLOv8识别自定义模型

一、背景介绍

最近项目需要识别自定义物品,于是学习利用YOLOv8算法,实现物品识别。由于物体类别不再常规模型中,因此需要自己训练相应的模型,特此记录模型训练的过程。

二、训练模型的步骤

1.拍照获取训练图片(训练图片越多越好)

2.将图片进行处理获得数据集:

给图片打标签,并完成数据集分割。按照验证情况,训练集越多,最终的模型验证结果越好。

深度相机识别物体------实现数据集准备与数据集分割-CSDN博客

3.训练模型:

用以下代码进行模型训练,epochs表示的是迭代次数,imgsz表示的是图像大小。

模型训练前,需要先配置相应的文件,配置文件test_data.yaml如下:

python 复制代码
# 模型训练时的配置文件,说明了文件训练的地址和

# path: C:\Users\82370\.conda\envs\Ayolo8\Lib\site-packages\ultralytics\dataset 
train: C:\Users\82370\.conda\envs\Ayolo8\Lib\site-packages\ultralytics\dataset\train # train 文件夹
val: C:\Users\82370\.conda\envs\Ayolo8\Lib\site-packages\ultralytics\dataset\val # val 文件夹
test: # test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794

nc: 2  # 类别数目
# Classes
names: [Sumblock, Barbie]
  #0: Sunblock
  #1: Barbie

模型训练文件train_model,py 如下:

python 复制代码
# 用于训练自定义模型的代码文件
from ultralytics import YOLO
import os
os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE' # 这里是用于解决报错
# load a model 加载模型
model = YOLO('yolov8n.pt')

# train the model 训练模型
results = model.train(data='test_data.yaml', epochs=300, imgsz=640)

# 模型验证
model.val()

注意,运行训练模型文件时,需要先在命令行执行cd C:\Users\82370\.conda\envs\Ayolo8\Lib\site-packages\ultralytics\dataset ,进入到test_data.yaml配置文件所在文件夹。

训练过程示意图:

下图为训练结果储存位置,其中best为训练出的模型

4. 利用图片对相应的模型进行验证

相应Yolo_test.py代码如下

python 复制代码
from ultralytics import YOLO

model =YOLO(r'C:\Users\82370\.conda\envs\Ayolo8\Lib\site-packages\ultralytics\dataset\runs\detect\train\weights\best.pt')
model.predict(r'E:\T\TE1.jpg',save=True)
model.predict(r'E:\T\testa.jpg',save=True)
model.predict(r'E:\T\ts.jpg',save=True)

验证结果如下:

相关推荐
瓦力的狗腿子14 小时前
AI技术的发展为卫星控制系统研发带来的影响与思考
人工智能
Katecat9966314 小时前
花生检测与识别:基于YOLOv10n-CGAFusion的改进方法
yolo
人工智能AI技术14 小时前
YOLOv9目标检测实战:用Python搭建你的第一个实时交通监控系统
人工智能
小雨中_15 小时前
2.7 强化学习分类
人工智能·python·深度学习·机器学习·分类·数据挖掘
拯救HMI的工程师15 小时前
【拯救HMI】工业HMI字体选择:拒绝“通用字体”,适配工业场景3大要求
人工智能
lczdyx15 小时前
【胶囊网络】01-2 胶囊网络发展历史与研究现状
人工智能·深度学习·机器学习·ai·大模型·反向传播
AomanHao15 小时前
【ISP】基于暗通道先验改进的红外图像透雾
图像处理·人工智能·算法·计算机视觉·图像增强·红外图像
AI智能观察15 小时前
从数据中心到服务大厅:数字人智能体如何革新电力行业服务模式
人工智能·数字人·智慧展厅·智能体·数字展厅
AI智能观察15 小时前
生成式AI驱动信息分发变革:GEO跃迁方向、价值锚点与企业生存指南
人工智能·流量运营·geo·ai搜索·智能营销·geo工具·geo平台
苏渡苇15 小时前
轻量化AI落地:Java + Spring Boot 实现设备异常预判
java·人工智能·spring boot·后端·网络协议·tcp/ip·spring