N-gram算法的pytorch代码实现

代码实现

python 复制代码
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker

def tri_gramizer(test_sentence):
    # 将单词序列转化为数据元组列表,
    # 其中的每个元组格式为([ word_i-2, word_i-1 ], target word)
    trigrams = [ ([test_sentence[i], test_sentence[i+1]], test_sentence[i+2]) for i in range(len(test_sentence) - 2) ]

    # 给14行诗建立单词表
    # set 即去除重复的词
    vocab = set(test_sentence)
    # 建立词典,它比单词表多了每个词的索引
    word_to_ix = { word: i for i, word in enumerate(vocab) }
    
    print('The vocab length:', len(vocab))
    
    return trigrams, vocab, word_to_ix

class NGramLanguageModeler(nn.Module):
    # 初始化时需要指定:单词表大小、想要嵌入的维度大小、上下文的长度
    def __init__(self, vocab_size, embedding_dim, context_size):
        # 继承自nn.Module,例行执行父类super 初始化方法
        super(NGramLanguageModeler, self).__init__()
        # 建立词嵌入模块
        self.embeddings = nn.Embedding(vocab_size, embedding_dim)
        # 线性层1
        self.linear1 = nn.Linear(context_size * embedding_dim, 128)
        # 线性层2,隐藏层 hidden_size 为128
        self.linear2 = nn.Linear(128, vocab_size)

    # 重写的网络正向传播方法
    # 只要正确定义了正向传播
    # PyTorch 可以自动进行反向传播
    def forward(self, inputs):
        # 将输入进行"嵌入",并转化为"行向量"
        embeds = self.embeddings(inputs).view((1, -1))
        # 嵌入后的数据通过线性层1后,进行非线性函数 ReLU 的运算
        out = F.relu(self.linear1(embeds))
        # 通过线性层2后
        out = self.linear2(out)
        # 通过 log_softmax 方法将结果映射为概率的log
        # log 概率是用于下面计算负对数似然损失函数时方便使用的
        return out

def train(trigrams, vocab, word_to_ix):
    print('Training...')
    
    # 上下文大小
    # 即 前两个词
    CONTEXT_SIZE = 2
    # 嵌入维度
    EMBEDDING_DIM = 10

    # 计算损失
    losses = []
    # 损失函数为 交叉熵损失函数(Cross Entropy Loss)
    loss_function = nn.CrossEntropyLoss()  # 将NLLLoss替换为CrossEntropyLoss
    # 实例化我们的模型,传入:
    # 单词表的大小、嵌入维度、上下文长度
    model = NGramLanguageModeler(len(vocab), EMBEDDING_DIM, CONTEXT_SIZE)
    # 优化函数使用随机梯度下降算法,学习率设置为0.001
    optimizer = optim.SGD(model.parameters(), lr=0.001)

    for epoch in range(1000):
        print(f'epoch: {epoch}')
        total_loss = 0
        # 循环context上下文,比如:['When', 'forty']
        # target,比如:winters
        for context, target in trigrams:

            # 步骤1:准备数据
            # 将context如"['When', 'forty']"
            # 转化为索引,如[68, 15]
            # 不再需要建立为 PyTorch Variable 变量,张量默认支持自动求导
            context_idxs = torch.LongTensor(list(map(lambda w: word_to_ix[w], context)))

            # 步骤2:清空梯度值,防止上次的梯度累计
            model.zero_grad()

            # 步骤3:运行网络的正向传播,获得 log 概率
            out = model(context_idxs)

            # 步骤4:计算损失函数
            # 不再需要传入 autograd.Variable
            loss = loss_function(out, torch.LongTensor([word_to_ix[target]]))

            # 步骤5:进行反向传播并更新梯度
            loss.backward()
            optimizer.step()

            total_loss += loss.item()
        losses.append(total_loss)

    print('Finished')    
    # 保存模型的状态字典和相关信息
    torch.save(model.state_dict(), 'model_state_dict.pth')
    return model, losses

def plot_losses(losses):
    plt.figure()
    plt.plot(losses)


def predict(input_data, model):
    first_word, second_word = input_data
    if first_word not in vocab or second_word not in vocab:
        print('Unknown word')
        return '-1'
    input_tensor = torch.LongTensor([word_to_ix[first_word], word_to_ix[second_word]])
    predict_idx = torch.argmax(model(input_tensor)).item()
    predict_word = list(vocab)[predict_idx]
    print('input words:', first_word, second_word)
    print('predicted word:', predict_word)
    return predict_word

if __name__ == '__main__':
    # 数据我们使用的是莎士比亚的14行诗
    test_sentence = """When forty winters shall besiege thy brow,
    And dig deep trenches in thy beauty's field,
    Thy youth's proud livery so gazed on now,
    Will be a totter'd weed of small worth held:
    Then being asked, where all thy beauty lies,
    Where all the treasure of thy lusty days;
    To say, within thine own deep sunken eyes,
    Were an all-eating shame, and thriftless praise.
    How much more praise deserv'd thy beauty's use,
    If thou couldst answer 'This fair child of mine
    Shall sum my count, and make my old excuse,'
    Proving his beauty by succession thine!
    This were to be new made when thou art old,
    And see thy blood warm when thou feel'st it cold.""".split()    # 按空格切分 


    trigrams, vocab, word_to_ix = tri_gramizer(test_sentence)

    # model, losses = train(trigrams, vocab, word_to_ix)
    # plot_losses(losses)
    
    # 上下文大小
    # 即 前两个词
    CONTEXT_SIZE = 2
    # 嵌入维度
    EMBEDDING_DIM = 10    
    model = NGramLanguageModeler(len(vocab), EMBEDDING_DIM, CONTEXT_SIZE)
    model.load_state_dict(torch.load('model_state_dict.pth'))
    
    input_data = ['When', 'forty']
    word = predict(input_data, model)

    

参考文章:深度学习新手必学:使用 Pytorch 搭建一个 N-Gram 模型

相关推荐
Narutolxy2 小时前
大模型数据分析破局之路20250512
人工智能·chatgpt·数据分析
浊酒南街2 小时前
TensorFlow中数据集的创建
人工智能·tensorflow
码上淘金2 小时前
【Python】Python常用控制结构详解:条件判断、遍历与循环控制
开发语言·python
Brilliant Nemo2 小时前
四、SpringMVC实战:构建高效表述层框架
开发语言·python
2301_787552873 小时前
console-chat-gpt开源程序是用于 AI Chat API 的 Python CLI
人工智能·python·gpt·开源·自动化
懵逼的小黑子3 小时前
Django 项目的 models 目录中,__init__.py 文件的作用
后端·python·django
layneyao3 小时前
AI与自然语言处理(NLP):从BERT到GPT的演进
人工智能·自然语言处理·bert
Y3174294 小时前
Python Day23 学习
python·学习
Ai尚研修-贾莲4 小时前
Python语言在地球科学交叉领域中的应用——从数据可视化到常见数据分析方法的使用【实例操作】
python·信息可视化·数据分析·地球科学
jndingxin4 小时前
OpenCV 的 CUDA 模块中用于将多个单通道的 GpuMat 图像合并成一个多通道的图像 函数cv::cuda::merge
人工智能·opencv·计算机视觉