论文阅读【时间序列】DSformer

论文阅读【时间序列】DSformer

arxive: DSformer: A Double Sampling Transformer for Multivariate Time Series Long-term Prediction

github: MTST

分类:多变量时间序列(Multivariate time series)

核心观点

多变量时间序列3个维度信息

  1. 变量间关联(Variable correlation):如Fig. 1(a)所示,不同变量具有相似的变化趋势 → \rightarrow → Variable Attention
  2. 全局信息(Global information):如Fig. 1(b)所示,从全局来看,序列显示出一定的周期性 → \rightarrow → Down Sampling
  3. 局部信息(Local information):如Fig. 1©所示,局部信息 → \rightarrow → Piecewise Sampling

个人观点:全局信息更多指周期项,局部信息更多指趋势项

整体框架

符号 含义
N 变量数
H 输入序列长度
L 输出序列长度
C 切分子序列数量

N 为变量数,H为输入序列长度,C是切分子序列的数量。

输入序列 X ∈ R N ∗ H X \in R^{N*H} X∈RN∗H,经过Down sampling得到 X d s ∈ R N ∗ C ∗ H C X_{ds} \in R ^{N * C * \frac{H}{C}} Xds∈RN∗C∗CH,经过Picewise Sampling得到 X p s ∈ R N ∗ C ∗ H C X_{ps} \in R ^{N * C * \frac{H}{C}} Xps∈RN∗C∗CH。

TVA-block中进行Variable AttentionTemporal Attention。其中Temporal Attention中 Q ∈ R N ∗ C ∗ H C Q \in R ^{N * C * \frac{H}{C}} Q∈RN∗C∗CH, K ∈ R N ∗ H C ∗ C K \in R ^{N * \frac{H}{C} *C} K∈RN∗CH∗C;Variable Attention中 Q ∈ R H C ∗ C ∗ N Q \in R ^{\frac{H}{C} * C * N} Q∈RCH∗C∗N, K ∈ R ∗ H C ∗ N ∗ C K \in R ^{ * \frac{H}{C} *N *C} K∈R∗CH∗N∗C。

Temporal Attention是子序列之间,通过比较同一变量子序列的相似度计算注意力,Variable Attention是不同子序列之间,通过比较同一位置各个变量的相似度计算注意力。

随后,Temporal AttentionVariable Attention输出 X ′ ∈ R N ∗ C ∗ H C X' \in R ^{N * C * \frac{H}{C}} X′∈RN∗C∗CH被FFN压缩成 X ′ ∈ R N ∗ H C X' \in R ^{N * \frac{H}{C}} X′∈RN∗CH,然后相加。

最后,经过一个TVA-block整理来自不同视角的信息(Down samplingPicewise Sampling)和MLP得到输出。

采样过程

两种采样方式的区别在于如何将切分后的子序列重新排列。

  • Down Sampling: 每隔几个点取一个,用来捕获全局信息
    X d s j = [ x j , x j + H C , x j + 2 ∗ H C , . . . , x j + ( C − 1 ) ∗ H C ] X^j_{ds} = [x_j, x_{j+\frac{H}{C}}, x_{j+2*\frac{H}{C}},..., x_{j+(C-1)*\frac{H}{C}}] Xdsj=[xj,xj+CH,xj+2∗CH,...,xj+(C−1)∗CH]
  • Piecewise Sampling:
    X p s j = [ x 1 + ( j − 1 ) ∗ C , x 2 + ( j − 1 ) ∗ C , x 3 + ( j − 1 ) ∗ C , . . . , x j ∗ C ] X^j_{ps} = [x_{1+(j-1)*C}, x_{2+(j-1)*C}, x_{3+(j-1)*C},..., x_{j*C}] Xpsj=[x1+(j−1)∗C,x2+(j−1)∗C,x3+(j−1)∗C,...,xj∗C]

TVA block

两种attention的主要区别在于X的维度变化:

  • Temporal Attention: Q ∈ R N ∗ C ∗ H C Q \isin R^{N * C * \frac{H}{C}} Q∈RN∗C∗CH, K ∈ R N ∗ H C ∗ C K \isin R^{N * \frac{H}{C} * C} K∈RN∗CH∗C
  • Variable Attention: Q ∈ R H C ∗ C ∗ N Q \isin R^{ \frac{H}{C} * C * N} Q∈RCH∗C∗N, K ∈ R H C ∗ N ∗ C K \isin R^{ \frac{H}{C} * N * C} K∈RCH∗N∗C
相关推荐
Deepoch3 分钟前
具身智能产业新范式:Deepoc开发板如何破解机器人智能化升级难题
人工智能·科技·机器人·开发板·具身模型·deepoc
浪子不回头4159 分钟前
SGLang学习笔记
人工智能·笔记·学习
飞哥数智坊1 小时前
TRAE 国内版 SOLO 全放开
人工智能·ai编程·trae
落叶,听雪1 小时前
AI建站推荐
大数据·人工智能·python
AI猫站长1 小时前
快讯|特斯拉机器人街头“打工”卖爆米花;灵心巧手香港AI艺术节秀“艺能”,香港艺发局主席霍启刚积极评价;国产核心部件价格将“腰斩”
人工智能·机器人·具身智能·neurips·灵心巧手·脑电波·linkerhand
Godspeed Zhao2 小时前
自动驾驶中的传感器技术77——Sensor Fusion(0)
人工智能·机器学习·自动驾驶
昨日之日20062 小时前
SCAIL - 自然流畅的AI角色动画生成软件 照片跳舞 虚拟偶像 WebUI+ComfyUI工作流 一键整合包下载
人工智能·音视频
geneculture2 小时前
从智力仿真到认知协同:人机之间的价值对齐与共生框架
大数据·人工智能·学习·融智学的重要应用·信智序位
我很哇塞耶2 小时前
OpenAI最新发布,企业级AI智能体的强化微调实践
人工智能·ai·大模型