代码随想录--二叉树部分
day16 二叉树第四天
文章目录
一、力扣513--找树左下角的值
代码随想录题目链接:代码随想录
给定一个二叉树的 根节点 root,请找出该二叉树的 最底层 最左边 节点的值。
假设二叉树中至少有一个节点。
层序遍历秒了,没什么好讲的
代码如下:
cpp
class Solution {
public:
int findBottomLeftValue(TreeNode* root) {
queue<TreeNode *> que;
que.push(root);
vector<int> temp;
while(!que.empty())
{
int length = que.size();
for(int i = 0; i < length; i ++)
{
TreeNode * curr = que.front(); que.pop();
if(curr->left) que.push(curr->left);
if(curr->right) que.push(curr->right);
if(i == 0) temp.push_back(curr->val);
}
}
return temp[temp.size()-1];
}
};
递归法的话,需要回溯,递归到最底层后再判断是否为最左边的节点。
cpp
class Solution {
public:
int maxDepth = INT_MIN;
int result;
void traversal(TreeNode* root, int depth) {
if (root->left == NULL && root->right == NULL) {
if (depth > maxDepth) {
maxDepth = depth;
result = root->val;
}
return;
}
if (root->left) {
depth++;
traversal(root->left, depth);
depth--;
}
if (root->right) {
depth++;
traversal(root->right, depth);
depth--;
}
return;
}
int findBottomLeftValue(TreeNode* root) {
traversal(root, 0);
return result;
}
};
二、力扣112--路径总和
代码随想录题目链接:代码随想录
给你二叉树的根节点 root 和一个表示目标和的整数 targetSum 。判断该树中是否存在 根节点到叶子节点 的路径,这条路径上所有节点值相加等于目标和 targetSum 。如果存在,返回 true ;否则,返回 false 。
叶子节点 是指没有子节点的节点。
可以类似二叉树的所有路径方式写一个回溯,然后计算每个path的总和
代码如下:
cpp
class Solution {
public:
bool traversal(TreeNode * curr, vector<int> & path, int targetSum)
{
if(!curr->left && !curr->right)
{
int sum = 0;
for(auto ele : path)
{
sum += ele;
}
if(sum + curr->val == targetSum) return true;
else return false;
}
if(curr->left)
{
path.push_back(curr->val);
if(traversal(curr->left, path, targetSum)) return true;
path.pop_back();
}
if(curr->right)
{
path.push_back(curr->val);
if(traversal(curr->right, path, targetSum)) return true;
path.pop_back();
}
return false;
}
bool hasPathSum(TreeNode* root, int targetSum) {
vector<int> path;
if(!root) return false;
return traversal(root, path, targetSum);
}
};
附加题:力扣113--路径总和Ⅱ
遍历所有路径时加个判断即可,如果通过就把当前的path加入result,注意要把当前节点的val加入path后再进result,进完需要把当前节点的val再pop出来,不然会影响回溯
cpp
class Solution {
public:
void traversal(TreeNode * curr, vector<int> path, int targetSum, vector<vector<int>> &result)
{
if(!curr->left && !curr->right)
{
int sum = 0;
for(auto ele : path) sum += ele;
sum += curr->val;
if(sum == targetSum)
{
path.push_back(curr->val);
result.push_back(path);
path.pop_back();
}
}
if(curr->left)
{
path.push_back(curr->val);
traversal(curr->left, path, targetSum, result);
path.pop_back();
}
if(curr->right)
{
path.push_back(curr->val);
traversal(curr->right, path, targetSum, result);
path.pop_back();
}
}
vector<vector<int>> pathSum(TreeNode* root, int targetSum) {
if(!root) return {};
vector<int> path;
vector<vector<int>> result;
traversal(root, path, targetSum, result);
return result;
}
};
三、力扣106--从中序与后序遍历序列构造二叉树
代码随想录题目链接:代码随想录
给定两个整数数组 inorder 和 postorder ,其中 inorder 是二叉树的中序遍历, postorder 是同一棵树的后序遍历,请你构造并返回这颗 二叉树 。
如何通过中序和后序构建二叉树参考链接讲解
这个题的递归也比较清晰,取后序的最后一位,用其对中序分割,再返回来分割后序,从而能够递归构建左右子树
难点在于怎么分割
代码如下:
cpp
class Solution {
public:
TreeNode* traversal(vector<int> inorder, vector<int> postorder)
{
if(!inorder.empty() && !postorder.empty())
{
TreeNode * curr = new TreeNode(postorder[postorder.size()-1]);
if(postorder.size() == 1) return curr;
int delimiterIndex;
for (delimiterIndex = 0; delimiterIndex < inorder.size(); delimiterIndex++)
{
if (inorder[delimiterIndex] == postorder[postorder.size()-1]) break;
}
// divide the inorder vector
vector<int> leftInorder(inorder.begin(), inorder.begin() + delimiterIndex);
vector<int> rightInorder(inorder.begin() + delimiterIndex + 1, inorder.end());
// skip the final element of postorder for it has been used
postorder.resize(postorder.size() - 1);
vector<int> leftPostorder(postorder.begin(), postorder.begin() + leftInorder.size());
vector<int> rightPostorder(postorder.begin() + leftInorder.size(), postorder.end());
curr->left = traversal(leftInorder, leftPostorder);
curr->right = traversal(rightInorder, rightPostorder);
return curr;
}
return nullptr;
}
TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {
if(inorder.empty() || postorder.empty()) return nullptr;
// this can be delete cause traversal() can deal with it
return traversal(inorder, postorder);
}
};
想起来了vector分割可以用
cpp
vector<int> X(vectorB.begin(), vectorB.end());
来创建一个指定的vector,不需要自己去遍历插入
附加题:力扣105--从前序与中序遍历序列构造二叉树
不同于106,本题要用前序遍历的首节点去分割,剩下思路一样
代码如下:
cpp
class Solution {
public:
TreeNode * traversal(vector<int>& preorder, vector<int>& inorder)
{
if(preorder.empty() || inorder.empty()) return nullptr;
TreeNode * curr = new TreeNode(preorder[0]);
if(preorder.size() == 1) return curr;
int diff = 0;
for(diff = 0; diff < inorder.size(); diff ++)
{
if(inorder[diff] == preorder[0]) break;
}
vector<int> leftInorder(inorder.begin(), inorder.begin() + diff);
vector<int> rightInorder(inorder.begin() + diff + 1, inorder.end());
vector<int> leftPreorder(preorder.begin() + 1, preorder.begin() + diff + 1);
vector<int> rightPreorder(preorder.begin() + 1 + diff, preorder.end());
curr->left = traversal(leftPreorder, leftInorder);
curr->right = traversal(rightPreorder, rightInorder);
return curr;
}
TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {
return traversal(preorder, inorder);
}
};