Datawhale AI 夏令营 机器学习挑战赛

一、赛事背景

在当今科技日新月异的时代,人工智能(AI)技术正以前所未有的深度和广度渗透到科研领域,特别是在化学及药物研发中展现出了巨大潜力。精准预测分子性质有助于高效筛选出具有优异性能的候选药物。以PROTACs为例,它是一种三元复合物由目标蛋白配体、linker、E3连接酶配体组成,靶向降解目标蛋白质。本次大赛聚焦于运用先进的人工智能算法预测其降解效能,旨在激发参赛者创新思维,推动AI技术与化学生物学的深度融合,进一步提升药物研发效率与成功率,为人类健康事业贡献智慧力量。通过此次大赛,我们期待见证并孵化出更多精准、高效的分子性质预测模型,共同开启药物发现的新纪元。

二、赛事任务

选手根据提供的demo数据集,可以基于demo数据集进行数据增强、自行搜集数据等方式扩充数据集,并自行划分数据。运用深度学习、强化学习或更加优秀人工智能的方法预测PROTACs的降解能力,若DC50>100nM且Dmax<80% ,则视为降解能力较差(demo数据集中Label=0);若DC50<=100nM或Dmax>=80%,则视为降解能力好(demo数据集中Label=1)。

下面给出代码流程:

  1. 数据加载
    • 使用pandas库从Excel文件中加载训练和测试数据集。
  2. 数据预处理
    • 删除训练集中不需要的列('DC50 (nM)'和'Dmax (%)')。
    • 检查测试集中的列,如果某列的非空值少于10个,则将该列从训练和测试集中删除。
    • 将训练和测试集合并为一个数据集,以便进行统一处理。
  3. SMILES转换
    • 使用rdkit库将SMILES字符串转换为isomeric SMILES,并将其连接成一个字符串。
  4. TF-IDF计算
    • 使用TfidfVectorizer计算SMILES字符串的TF-IDF值,并将其添加到数据集中。
  5. 自然数编码
    • 对所有对象类型的列进行自然数编码,即将每个唯一值映射到一个整数。
  6. 数据分割
    • 将带有标签的数据分割为训练集和验证集,测试集保持不变(包含NaN标签)。
  7. 特征筛选
    • 选择除'uuid'、'Label'和'smiles_list'之外的所有列作为特征。
  8. 网格搜索优化参数
    • 使用GridSearchCV进行参数优化,找到最佳的CatBoost分类器参数。
  9. 模型训练和验证
    • 使用最佳参数训练CatBoost分类器,并使用验证集进行早停,以防止过拟合。
  10. 预测和保存结果
    • 使用训练好的模型对测试集进行预测,并将预测结果保存为CSV文件。

下面是具体代码的分享

python 复制代码
import numpy as np  
import pandas as pd  
from catboost import CatBoostClassifier  
from sklearn.model_selection import train_test_split  
from sklearn.metrics import f1_score  
from rdkit import Chem  
from rdkit.Chem import Descriptors  
from sklearn.feature_extraction.text import TfidfVectorizer  
import os, gc, warnings 
from sklearn.model_selection import GridSearchCV, KFold  
warnings.filterwarnings('ignore')  
  
# 数据加载  
train_full = pd.read_excel(r'C:\\Users\\admin\\Desktop\\dataset-new\\dataset-new\\traindata-new.xlsx')  
test = pd.read_excel(r'C:\\Users\\admin\\Desktop\\dataset-new\\dataset-new\\testdata-new.xlsx')  
  
# 数据预处理  
train_full = train_full.drop(['DC50 (nM)', 'Dmax (%)'], axis=1)  
drop_cols = []  
for f in test.columns:  
    if test[f].notnull().sum() < 10:  
        drop_cols.append(f)  
train_full = train_full.drop(drop_cols, axis=1)  
test = test.drop(drop_cols, axis=1)  
  
data = pd.concat([train_full, test], axis=0, ignore_index=True)  
cols = data.columns[2:]  # 假设前两列是uuid和Label(或类似的列),这里需要根据实际情况调整  
  
# SMILES转换  
data['smiles_list'] = data['Smiles'].apply(lambda x: [Chem.MolToSmiles(mol, isomericSmiles=True) for mol in [Chem.MolFromSmiles(x)]])  
data['smiles_list'] = data['smiles_list'].map(lambda x: ' '.join(x))  
  
# TF-IDF计算  
tfidf = TfidfVectorizer(max_df=0.9, min_df=1, sublinear_tf=True)  
res = tfidf.fit_transform(data['smiles_list'])  
tfidf_df = pd.DataFrame(res.toarray())  
tfidf_df.columns = [f'smiles_tfidf_{i}' for i in range(tfidf_df.shape[1])]  
data = pd.concat([data, tfidf_df], axis=1)  
  
# 自然数编码  
def label_encode(series):  
    unique = list(series.unique())  
    return series.map(dict(zip(unique, range(series.nunique()))))  
  
for col in cols:  
    if data[col].dtype == 'object':  
        data[col] = label_encode(data[col])  
  
labeled_data = data[data.Label.notnull()]  

train, val = train_test_split(labeled_data, test_size=0.01, random_state=42, stratify=labeled_data['Label'])  
  
# 外部验证集仍然是原始测试集,它包含NaN标签  
test = data[data.Label.isnull()]   
  
# 特征筛选  
features = [f for f in train.columns if f not in ['uuid', 'Label', 'smiles_list']]  
  
# 构建训练集和验证集  
x_train = train[features]  
y_train = train['Label'].astype(int)  
x_val = val[features]  
y_val = val['Label'].astype(int)  
  
# 网格搜索优化参数  
params = {  
    'learning_rate': [0.1],  
    'depth': [ 6],  
    'l2_leaf_reg': [1],  
    'bootstrap_type': ['Bernoulli'],  
    'od_type': ['Iter'],  
    'random_seed': [42]  
}  
  
model = CatBoostClassifier(iterations=20, eval_metric='AUC', verbose=1)  
grid_search = GridSearchCV(model, params, cv=5, scoring='f1', verbose=1, n_jobs=-1)  
grid_search.fit(x_train, y_train)  
  
# 输出最佳参数  
print("Best parameters:", grid_search.best_params_)  
print("Best score:", grid_search.best_score_)  
  
# 使用最佳参数训练模型,并使用验证集进行早停  
best_model = CatBoostClassifier(**grid_search.best_params_, iterations=2, eval_metric='AUC', use_best_model=True, verbose=1)  
best_model.fit(x_train, y_train, eval_set=[(x_val, y_val)])  
  
# 预测  
test_pred = best_model.predict_proba(test[features])[:, 1]  
  
# 保存结果  
pd.DataFrame({  
    'uuid': test['uuid'],  
    'Label': np.where(test_pred > 0.5, 1, 0)  
}).to_csv('submit.csv', index=None)

最后是运行结果:

相关推荐
用户6915811416540 分钟前
Ascend Extension for PyTorch的源码解析
人工智能
Chef_Chen40 分钟前
从0开始学习机器学习--Day13--神经网络如何处理复杂非线性函数
神经网络·学习·机器学习
Troc_wangpeng41 分钟前
R language 关于二维平面直角坐标系的制作
开发语言·机器学习
努力的家伙是不讨厌的43 分钟前
解析json导出csv或者直接入库
开发语言·python·json
用户691581141651 小时前
Ascend C的编程模型
人工智能
-Nemophilist-1 小时前
机器学习与深度学习-1-线性回归从零开始实现
深度学习·机器学习·线性回归
云空1 小时前
《Python 与 SQLite:强大的数据库组合》
数据库·python·sqlite
成富2 小时前
文本转SQL(Text-to-SQL),场景介绍与 Spring AI 实现
数据库·人工智能·sql·spring·oracle
凤枭香2 小时前
Python OpenCV 傅里叶变换
开发语言·图像处理·python·opencv
CSDN云计算2 小时前
如何以开源加速AI企业落地,红帽带来新解法
人工智能·开源·openshift·红帽·instructlab