【AI原理解析】—胶囊神经网络(GNN)原理

目录

一、基本原理

[1. 胶囊结构](#1. 胶囊结构)

[2. 层级结构](#2. 层级结构)

二、动态路由算法

[1. 加权输入向量](#1. 加权输入向量)

[2. 路由过程](#2. 路由过程)

三、非线性激活函数

四、优势与局限性

优势

局限性

五、应用前景


一、基本原理

1. 胶囊结构
  • 定义:胶囊网络的核心在于将神经元组织成不同级别的"胶囊"结构,每个胶囊由一组神经元组成,用于表示特定类型的实体(如对象或对象部分)的实例化参数(如可能性、方向、大小等)。
  • 向量输出:每个胶囊的输出是一个向量,而非传统神经网络中的标量。向量的长度(模)表示实体存在的概率,向量的方向表示除了概率以外的其他实例化参数,如位置、角度、大小等。
2. 层级结构
  • 胶囊网络具有层级结构,每一层胶囊代表了不同层次的特征。低层次的胶囊可能代表眼睛、鼻子等局部特征,而高层次的胶囊则可能代表人脸等整体特征。

二、动态路由算法

1. 加权输入向量
  • 底层胶囊的输出向量通过权重矩阵与高层胶囊相连接。权重矩阵编码了底层特征和高层特征之间的空间关系和其他重要关系。
  • 加权输入向量是底层胶囊的输出向量与相应的权重矩阵相乘的结果,它决定了当前胶囊将其输出传递到哪个更高级的胶囊。
2. 路由过程
  • 初始化:所有连接权重的值都初始化为相同的值(如0.5),表示不确定性最大。
  • 迭代更新
    • 在每次迭代中,计算底层胶囊的输出向量与高层胶囊的预测向量之间的相似度(通常通过点积来衡量)。
    • 根据相似度更新连接权重。相似度越高,权重越大,表示该底层胶囊的输出更有可能对高层胶囊的预测有贡献。
    • 重复该过程多次,直到达到预设的迭代次数或收敛条件。
  • 结果:经过多次迭代后,底层胶囊的输出将更准确地传递到与其最相关的高层胶囊,从而实现特征的层次化表示。

三、非线性激活函数

  • 胶囊网络使用squash函数作为非线性激活函数。squash函数将向量的长度压缩到0到1之间,同时保持向量的方向不变。这有助于保持胶囊输出向量的稳定性和一致性。

四、优势与局限性

优势
  1. 对姿态和视角的变化更加鲁棒:通过动态路由算法,胶囊网络能够自适应地计算物体之间的关系,从而更好地适应形状、姿态和视角上的变化。
  2. 更好地利用上下文信息:由于胶囊之间的关系被显式地表示为向量,胶囊网络能够更好地利用上下文信息来识别和分类复杂的图像和物体。
  3. 对欺骗性样本更加鲁棒:动态路由机制可以在训练过程中自适应地排除欺骗性样本的干扰因素。
局限性
  1. 训练时间较长:由于需要更多的计算资源和更长的训练时间,胶囊网络在实际应用中的成本较高。
  2. 模型复杂性:胶囊网络的结构较为复杂,使得模型的可解释性不够强,同时在实际应用中难以实现。

五、应用前景

图像分类、目标识别、自然语言处理等领域

相关推荐
张较瘦_1 小时前
[论文阅读] 人工智能 + 软件工程 | 需求获取访谈中LLM生成跟进问题研究:来龙去脉与创新突破
论文阅读·人工智能
一 铭2 小时前
AI领域新趋势:从提示(Prompt)工程到上下文(Context)工程
人工智能·语言模型·大模型·llm·prompt
麻雀无能为力5 小时前
CAU数据挖掘实验 表分析数据插件
人工智能·数据挖掘·中国农业大学
时序之心5 小时前
时空数据挖掘五大革新方向详解篇!
人工智能·数据挖掘·论文·时间序列
.30-06Springfield6 小时前
人工智能概念之七:集成学习思想(Bagging、Boosting、Stacking)
人工智能·算法·机器学习·集成学习
说私域7 小时前
基于开源AI智能名片链动2+1模式S2B2C商城小程序的超级文化符号构建路径研究
人工智能·小程序·开源
永洪科技7 小时前
永洪科技荣获商业智能品牌影响力奖,全力打造”AI+决策”引擎
大数据·人工智能·科技·数据分析·数据可视化·bi
shangyingying_17 小时前
关于小波降噪、小波增强、小波去雾的原理区分
人工智能·深度学习·计算机视觉
书玮嘎8 小时前
【WIP】【VLA&VLM——InternVL系列】
人工智能·深度学习
猫头虎8 小时前
猫头虎 AI工具分享:一个网页抓取、结构化数据提取、网页爬取、浏览器自动化操作工具:Hyperbrowser MCP
运维·人工智能·gpt·开源·自动化·文心一言·ai编程