牛顿插值法【python,算法】

牛顿插值法是一种构建插值多项式的方法,它利用一系列已知的数据点来估算区间内任意点的函数值。这种方法的特点是通过计算差商(divided differences)来逐步构建插值多项式,具有较好的计算效率和承袭性,即在添加或删除数据点时,可以基于已有计算结果进行调整,无需完全重新计算。

基本步骤如下:

  1. 定义差商
    f ( x 0 , x 1 , . . . . , x n ) = f ( x 1 , x 2 , . . . . . , x n ) − f ( x 0 , x 1 , . . . . . , x n − 1 x n − x 0 f(x_0,x_1,....,x_n)=\frac{f(x_1,x_2,.....,x_n)-f(x_0,x_1,.....,x_{n-1}}{x_n-x_0} f(x0,x1,....,xn)=xn−x0f(x1,x2,.....,xn)−f(x0,x1,.....,xn−1
  2. 构造插值多项式
    P n ( x ) = f ( x 0 ) + ∑ i = 1 n f ( x 0 , x 1 , . . . , x i ) ∏ k = 0 i − 1 ( x − x k ) P_n(x)=f(x_0)+\sum\limits_{i=1}^{n}f(x_0,x_1,...,x_i) \prod\limits_{k=0}^{i-1}(x-x_k) Pn(x)=f(x0)+i=1∑nf(x0,x1,...,xi)k=0∏i−1(x−xk)
  3. 插值过程
    • 从最低阶差商开始计算,逐步向上计算更高阶的差商。
    • 根据计算出的差商构造最终的插值多项式。
    • 计算 x x x的估计函数值 P n ( x ) P_n(x) Pn(x)。

以下是牛顿插值法的 Python 实现:

python 复制代码
import numpy as np


def newton_interpolation(x_points, y_points, target_x):
    n = len(x_points)
    # 初始化差商表
    divided_diff = np.zeros((n, n))
    if len(y_points) != n:
        raise ValueError('x_points and y_points must have the same length')
    # 第 0 列初始化为 y_points
    divided_diff[:, 0] = y_points
    # 计算 i 阶差商
    for i in range(1, n):
        for j in range(n - i):
            divided_diff[j, i] = (divided_diff[j + 1, i - 1] - divided_diff[j, i - 1]) / (x_points[j + i] - x_points[j])

    # 根据差商计算插值
    result = y_points[0]
    for i in range(1, n):
        # 第 i 阶差商
        p = divided_diff[0, i]
        # 计算 x-x_j,将所有的结果相乘
        for j in range(i):
            p *= (target_x - x_points[j])
        result += p
    return result


# 测试验证
x_points = [1, 2, 3, 4]
y_points = [1, 4, 9, 16]
print(newton_interpolation(x_points, y_points, 5))
相关推荐
froginwe119 分钟前
传输对象模式(Object Transfer Pattern)
开发语言
sprintzer17 分钟前
1.6-1.15力扣数学刷题
算法·leetcode·职场和发展
qq_4061761419 分钟前
深入理解 JavaScript 闭包:从原理到实战避坑
开发语言·前端·javascript
jiang_bluetooth19 分钟前
channel sounding基于探测序列的时延和相位差算法
算法·蓝牙测距·channel sound·gfsk·蓝牙6.0
灵活用工平台23 分钟前
灵活用工平台注册流程图
python·流程图
float_六七24 分钟前
JavaScript变量声明:var的奥秘
开发语言·前端·javascript
1candobetter24 分钟前
JAVA后端开发——深入理解 Java Static
java·开发语言
2501_9059673326 分钟前
双目视觉:CREStereo论文超详细解读
人工智能·python·计算机视觉·双目视觉
狗狗学不会28 分钟前
Pybind11 封装 RK3588 全流程服务:Python 写逻辑,C++ 跑并发,性能起飞!
c++·人工智能·python·目标检测
FuckPatience32 分钟前
C# SqlSugar+SQLite: 无法加载 DLL“e_sqlite3”: 找不到指定的模块
开发语言·c#