【深度学习】PixArt-Sigma 实战【3】速度测试

css 复制代码
import time

import torch
from diffusers import Transformer2DModel, PixArtSigmaPipeline
from diffusers import ConsistencyDecoderVAE

device = torch.device("cuda:1" if torch.cuda.is_available() else "cpu")
weight_dtype = torch.float16

pipe = PixArtSigmaPipeline.from_pretrained(
    "./PixArt-Sigma-XL-2-1024-MS",
    torch_dtype=weight_dtype,
    use_safetensors=True,
)
pipe.to(device)

# transformer = Transformer2DModel.from_pretrained(
#     # "PixArt-alpha/PixArt-Sigma-XL-2-1024-MS",
#     # "/ssd/xiedong/PixArt/PixArt-Sigma-XL-2-2K-MS",
#     "/ssd/xiedong/PixArt/PixArt-Sigma-XL-2-2K-MS",
#     subfolder='transformer',
#     torch_dtype=weight_dtype,
# )
# pipe = PixArtSigmaPipeline.from_pretrained(
#     # "PixArt-alpha/pixart_sigma_sdxlvae_T5_diffusers",
#     "/ssd/xiedong/PixArt/PixArt-sigma/output/pixart_sigma_sdxlvae_T5_diffusers",
#     transformer=transformer,
#     torch_dtype=weight_dtype,
#     use_safetensors=True,
# )
# pipe.vae = ConsistencyDecoderVAE.from_pretrained("/ssd/xiedong/PixArt/consistency-decoder", torch_dtype=torch.float16)
# pipe.to(device)

# Enable memory optimizations.
# pipe.enable_model_cpu_offload()

time1 = time.time()
prompt = "A small cactus with a happy face in the Sahara desert."
image = pipe(prompt).images[0]
time2 = time.time()
print(f"time use:{time2 - time1}")
image.save("./catcus.png")

time1 = time.time()
prompt = "A small cactus with a happy face in the Sahara desert."
image = pipe(prompt).images[0]
time2 = time.time()
print(f"time use:{time2 - time1}")
image.save("./catcus.png")

A100速度 20轮4.4秒。

Loading pipeline components...: 0%| | 0/5 [00:00<?, ?it/s]You are using the default legacy behaviour of the <class 'transformers.models.t5.tokenization_t5.T5Tokenizer'>. This is expected, and simply means that the legacy (previous) behavior will be used so nothing changes for you. If you want to use the new behaviour, set legacy=False. This should only be set if you understand what it means, and thouroughly read the reason why this was added as explained in https://github.com/huggingface/transformers/pull/24565

Loading pipeline components...: 60%|██████ | 3/5 [00:01<00:01, 1.65it/s]

Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s]

Loading checkpoint shards: 50%|█████ | 1/2 [00:01<00:01, 1.83s/it]

Loading checkpoint shards: 100%|██████████| 2/2 [00:03<00:00, 1.70s/it]

Loading pipeline components...: 100%|██████████| 5/5 [00:11<00:00, 2.29s/it]

100%|██████████| 20/20 [00:05<00:00, 3.89it/s]

time use:6.027105093002319

100%|██████████| 20/20 [00:04<00:00, 4.94it/s]

time use:4.406545162200928

相关推荐
cooldream2009几秒前
AI测试用例生成的基本流程与实践
人工智能·测试用例
引量AI5 分钟前
技术赋能——AI社媒矩阵营销工具如何重构社媒矩阵底层架构
人工智能·矩阵·自动化·tiktok矩阵·海外社媒
Secede.6 分钟前
TrOCR模型微调
python·深度学习·ocr
SoFlu软件机器人6 分钟前
AI 重构的陷阱:如何避免旧项目越改越烂?
人工智能·重构
MasterLLL022811 分钟前
DAY 53 对抗生成网络
人工智能
刘延林.14 分钟前
ROS 2安装 slam_toolbox
人工智能·机器人·自动驾驶
jndingxin22 分钟前
OpenCV CUDA模块图像变形------对图像进行GPU加速的透视变换函数warpPerspective()
人工智能·opencv·计算机视觉
RUZHUA32 分钟前
印度客机坠毁致波音美股盘前直线下跌
人工智能
魔障阿Q41 分钟前
华为服务器obsutil使用方法
服务器·人工智能·华为云
吴声子夜歌1 小时前
OpenCV——图像平滑
人工智能·opencv·计算机视觉