【深度学习】PixArt-Sigma 实战【3】速度测试

css 复制代码
import time

import torch
from diffusers import Transformer2DModel, PixArtSigmaPipeline
from diffusers import ConsistencyDecoderVAE

device = torch.device("cuda:1" if torch.cuda.is_available() else "cpu")
weight_dtype = torch.float16

pipe = PixArtSigmaPipeline.from_pretrained(
    "./PixArt-Sigma-XL-2-1024-MS",
    torch_dtype=weight_dtype,
    use_safetensors=True,
)
pipe.to(device)

# transformer = Transformer2DModel.from_pretrained(
#     # "PixArt-alpha/PixArt-Sigma-XL-2-1024-MS",
#     # "/ssd/xiedong/PixArt/PixArt-Sigma-XL-2-2K-MS",
#     "/ssd/xiedong/PixArt/PixArt-Sigma-XL-2-2K-MS",
#     subfolder='transformer',
#     torch_dtype=weight_dtype,
# )
# pipe = PixArtSigmaPipeline.from_pretrained(
#     # "PixArt-alpha/pixart_sigma_sdxlvae_T5_diffusers",
#     "/ssd/xiedong/PixArt/PixArt-sigma/output/pixart_sigma_sdxlvae_T5_diffusers",
#     transformer=transformer,
#     torch_dtype=weight_dtype,
#     use_safetensors=True,
# )
# pipe.vae = ConsistencyDecoderVAE.from_pretrained("/ssd/xiedong/PixArt/consistency-decoder", torch_dtype=torch.float16)
# pipe.to(device)

# Enable memory optimizations.
# pipe.enable_model_cpu_offload()

time1 = time.time()
prompt = "A small cactus with a happy face in the Sahara desert."
image = pipe(prompt).images[0]
time2 = time.time()
print(f"time use:{time2 - time1}")
image.save("./catcus.png")

time1 = time.time()
prompt = "A small cactus with a happy face in the Sahara desert."
image = pipe(prompt).images[0]
time2 = time.time()
print(f"time use:{time2 - time1}")
image.save("./catcus.png")

A100速度 20轮4.4秒。

Loading pipeline components...: 0%| | 0/5 [00:00<?, ?it/s]You are using the default legacy behaviour of the <class 'transformers.models.t5.tokenization_t5.T5Tokenizer'>. This is expected, and simply means that the legacy (previous) behavior will be used so nothing changes for you. If you want to use the new behaviour, set legacy=False. This should only be set if you understand what it means, and thouroughly read the reason why this was added as explained in https://github.com/huggingface/transformers/pull/24565

Loading pipeline components...: 60%|██████ | 3/5 [00:01<00:01, 1.65it/s]

Loading checkpoint shards: 0%| | 0/2 [00:00<?, ?it/s]

Loading checkpoint shards: 50%|█████ | 1/2 [00:01<00:01, 1.83s/it]

Loading checkpoint shards: 100%|██████████| 2/2 [00:03<00:00, 1.70s/it]

Loading pipeline components...: 100%|██████████| 5/5 [00:11<00:00, 2.29s/it]

100%|██████████| 20/20 [00:05<00:00, 3.89it/s]

time use:6.027105093002319

100%|██████████| 20/20 [00:04<00:00, 4.94it/s]

time use:4.406545162200928

相关推荐
莫叫石榴姐11 分钟前
数据科学与SQL:组距分组分析 | 区间分布问题
大数据·人工智能·sql·深度学习·算法·机器学习·数据挖掘
967712 分钟前
对抗样本存在的原因
深度学习
如若12333 分钟前
利用 `OpenCV` 和 `Matplotlib` 库进行图像读取、颜色空间转换、掩膜创建、颜色替换
人工智能·opencv·matplotlib
YRr YRr1 小时前
深度学习:神经网络中的损失函数的使用
人工智能·深度学习·神经网络
ChaseDreamRunner1 小时前
迁移学习理论与应用
人工智能·机器学习·迁移学习
Guofu_Liao1 小时前
大语言模型---梯度的简单介绍;梯度的定义;梯度计算的方法
人工智能·语言模型·矩阵·llama
我爱学Python!1 小时前
大语言模型与图结构的融合: 推荐系统中的新兴范式
人工智能·语言模型·自然语言处理·langchain·llm·大语言模型·推荐系统
果冻人工智能1 小时前
OpenAI 是怎么“压力测试”大型语言模型的?
人工智能·语言模型·压力测试
日出等日落1 小时前
Windows电脑本地部署llamafile并接入Qwen大语言模型远程AI对话实战
人工智能·语言模型·自然语言处理
静静的喝酒1 小时前
深度学习笔记之BERT(二)BERT精简变体:ALBERT
深度学习·bert·albert