抽取语料库索引语义向量并建milvus库

import random

import time

import os

import sys

from tqdm import tqdm

import numpy as np

import paddle

from paddle import inference

from paddlenlp.transformers import AutoModel, AutoTokenizer

from paddlenlp.data import Stack, Tuple, Pad

from paddlenlp.datasets import load_dataset

from paddlenlp.utils.log import logger

sys.path.append('.')

def convert_example(example,

tokenizer,

max_seq_length=512,

pad_to_max_seq_len=False):

result = []

for key, text in example.items():

encoded_inputs = tokenizer(text=text,

max_seq_len=max_seq_length,

pad_to_max_seq_len=pad_to_max_seq_len)

input_ids = encoded_inputs["input_ids"]

token_type_ids = encoded_inputs["token_type_ids"]

result += [input_ids, token_type_ids]

return result

model_dir='./output/yysy/'

corpus_file='./datasets/yysy/milvus/milvus_data_s.csv'

max_seq_length=64

batch_size=64

device='gpu'

cpu_threads=8

model_name_or_path='rocketqa-zh-base-query-encoder'

class Predictor(object):

def init(self,

model_dir,

device="gpu",

max_seq_length=128,

batch_size=32,

use_tensorrt=False,

precision="fp32",

cpu_threads=10,

enable_mkldnn=False):

self.max_seq_length = max_seq_length

self.batch_size = batch_size

model_file = model_dir + "inference.get_pooled_embedding.pdmodel"

params_file = model_dir + "inference.get_pooled_embedding.pdiparams"

if not os.path.exists(model_file):

raise ValueError("not find model file path {}".format(model_file))

if not os.path.exists(params_file):

raise ValueError("not find params file path {}".format(params_file))

config = paddle.inference.Config(model_file, params_file)

if device == "gpu":

config.enable_use_gpu(100, 0)

precision_map = {

"fp16": inference.PrecisionType.Half,

"fp32": inference.PrecisionType.Float32,

"int8": inference.PrecisionType.Int8

}

precision_mode = precision_map[precision]

if use_tensorrt:

config.enable_tensorrt_engine(max_batch_size=batch_size,

min_subgraph_size=30,

precision_mode=precision_mode)

elif device == "cpu":

config.disable_gpu()

if enable_mkldnn:

config.set_mkldnn_cache_capacity(10)

config.enable_mkldnn()

config.set_cpu_math_library_num_threads(cpu_threads)

elif device == "xpu":

config.enable_xpu(100)

config.switch_use_feed_fetch_ops(False)

self.predictor = paddle.inference.create_predictor(config)

self.input_handles = [

self.predictor.get_input_handle(name)

for name in self.predictor.get_input_names()

]

self.output_handle = self.predictor.get_output_handle(

self.predictor.get_output_names()[0])

def predict(self, data, tokenizer):

batchify_fn = lambda samples, fn=Tuple(

Pad(axis=0, pad_val=tokenizer.pad_token_id, dtype="int64"), # input

Pad(axis=0, pad_val=tokenizer.pad_token_type_id, dtype="int64"

), # segment

): fn(samples)

all_embeddings = []

examples = []

for idx, text in enumerate(tqdm(data)):

input_ids, segment_ids = convert_example(

text,

tokenizer,

max_seq_length=self.max_seq_length,

pad_to_max_seq_len=True)

examples.append((input_ids, segment_ids))

if (len(examples) >=self.batch_size):

input_ids, segment_ids = batchify_fn(examples)

self.input_handles[0].copy_from_cpu(input_ids)

self.input_handles[1].copy_from_cpu(segment_ids)

self.predictor.run()

logits = self.output_handle.copy_to_cpu()

all_embeddings.append(logits)

examples = []

if (len(examples) > 0):

input_ids, segment_ids = batchify_fn(examples)

self.input_handles[0].copy_from_cpu(input_ids)

self.input_handles[1].copy_from_cpu(segment_ids)

self.predictor.run()

logits = self.output_handle.copy_to_cpu()

all_embeddings.append(logits)

all_embeddings = np.concatenate(all_embeddings, axis=0)

np.save('yysy_corpus_embedding', all_embeddings)

def read_text(file_path):

file = open(file_path)

id2corpus = {}

for idx, data in enumerate(file.readlines()):

id2corpus[idx] = data.strip()

return id2corpus

predictor = Predictor(model_dir, device, max_seq_length, batch_size)

tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)

id2corpus = read_text(corpus_file)

corpus_list = [{idx: text} for idx, text in id2corpus.items()]#用来构建索引库的文本

predictor.predict(corpus_list, tokenizer)

MILVUS_HOST = '127.0.0.1'

MILVUS_PORT = 19530

data_dim = 256

top_k = 20

collection_name = 'literature_search'

partition_tag = 'partition_1'

embedding_name = 'embeddings'

index_config = {

"index_type": "IVF_FLAT",

"metric_type": "L2",

"params": {

"nlist": 1000

},

}

search_params = {

"metric_type": "L2",

"params": {

"nprobe": top_k

},

}

from pymilvus import (

connections,

utility,

FieldSchema,

CollectionSchema,

DataType,

Collection,

)

fmt = "\n=== {:30} ===\n"

text_max_len = 1000

fields = [

FieldSchema(name="pk",

dtype=DataType.INT64,

is_primary=True,#主键

auto_id=False,#不自动增长

max_length=100),#id

FieldSchema(name="text", dtype=DataType.VARCHAR, max_length=text_max_len),#text

FieldSchema(name="embeddings", dtype=DataType.FLOAT_VECTOR, dim=data_dim)#embedding

]

schema = CollectionSchema(fields, "Neural Search Index")

class VecToMilvus():#语义向量-->milvus

def init(self):

print(fmt.format("start connecting to Milvus"))

connections.connect("default", host=MILVUS_HOST, port=MILVUS_PORT)

self.collection = None

def has_collection(self, collection_name):

try:

has = utility.has_collection(collection_name)

print(f"Does collection {collection_name} exist in Milvus: {has}")

return has

except Exception as e:

print("Milvus has_table error:", e)

def creat_collection(self, collection_name):

try:

print(fmt.format("Create collection {}".format(collection_name)))

self.collection = Collection(collection_name,

schema,

consistency_level="Strong")

except Exception as e:

print("Milvus create collection error:", e)

def drop_collection(self, collection_name):

try:

utility.drop_collection(collection_name)

except Exception as e:

print("Milvus delete collection error:", e)

def create_index(self, index_name):

try:

print(fmt.format("Start Creating index"))

self.collection.create_index(index_name, index_config)

print(fmt.format("Start loading"))

self.collection.load()

except Exception as e:

print("Milvus create index error:", e)

def has_partition(self, partition_tag):

try:

result = self.collection.has_partition(partition_tag)

return result

except Exception as e:

print("Milvus has partition error: ", e)

def create_partition(self, partition_tag):

try:

self.collection.create_partition(partition_tag)

print('create partition {} successfully'.format(partition_tag))

except Exception as e:

print('Milvus create partition error: ', e)

def insert(self, entities, collection_name, index_name, partition_tag=None):

try:

if not self.has_collection(collection_name):

self.creat_collection(collection_name)

self.create_index(index_name)

else:

self.collection = Collection(collection_name)

if (partition_tag

is not None) and (not self.has_partition(partition_tag)):

self.create_partition(partition_tag)

self.collection.insert(entities, partition_name=partition_tag)

print(

f"Number of entities in Milvus: {self.collection.num_entities}"

) # check the num_entites

except Exception as e:

print("Milvus insert error:", e)

class RecallByMilvus():#从milvus召回向量

def init(self):

print(fmt.format("start connecting to Milvus"))

connections.connect("default", host=MILVUS_HOST, port=MILVUS_PORT)

self.collection = None

def get_collection(self, collection_name):

try:

print(fmt.format("Connect collection {}".format(collection_name)))

self.collection = Collection(collection_name)

except Exception as e:

print("Milvus create collection error:", e)

def search(self,

vectors,

embedding_name,

collection_name,

partition_names=[],

output_fields=[]):

try:

self.get_collection(collection_name)

result = self.collection.search(vectors,

embedding_name,

search_params,

limit=top_k,

partition_names=partition_names,

output_fields=output_fields)

return result

except Exception as e:

print('Milvus recall error: ', e)

data_path='./datasets/yysy/milvus/milvus_data_s.csv'

embedding_path='./yysy_corpus_embedding.npy'

index=18

batch_size=5000

def read_text(file_path):

file = open(file_path)

id2corpus = []

for idx, data in enumerate(file.readlines()):

id2corpus.append(data.strip())

return id2corpus

corpus_list_embed=read_text(data_path)

corpus_list_embed[:5]

embeddings = np.load(embedding_path)

embedding_ids = [i for i in range(embeddings.shape[0])]#嵌入ids

client = VecToMilvus()

client.has_collection(collection_name)

client.drop_collection(collection_name)

data_size = len(embedding_ids)

x=[corpus_list_embed[j][:1000]for j in range(10000, 15000,1)]#[:200]文本切片操作

max([len(i) for i in x])

for i in range(0, data_size, batch_size):

print(i)

for i in range(0, data_size, batch_size):#i:0-5000-10000-....

cur_end = i + batch_size

if (cur_end > data_size):#确保下标不越界

cur_end = data_size

batch_emb = embeddings[np.arange(i, cur_end)]#一个批次的嵌入向量

entities = [

j for j in range(i, cur_end, 1)\],#索引 \[corpus_list_embed\[j\]\[:text_max_len - 1\] for j in range(i, cur_end, 1)\],#文本 batch_emb #每个批次嵌入向量

client.insert(collection_name=collection_name,

entities=entities,

index_name=embedding_name,

partition_tag=partition_tag)

recall_client = RecallByMilvus()

embeddings = embeddings[np.arange(index, index + 1)]

time_start = time.time()# start

result = recall_client.search(embeddings,

embedding_name,

collection_name,

partition_names=[partition_tag],

output_fields=['pk', 'text'])

time_end = time.time()# end

sum_t = time_end - time_start

print('time cost', sum_t, 's')

for hits in result:

for hit in hits:

print(f"hit: {hit}, text field: {hit.entity.get('text')}")

相关推荐
研梦非凡1 小时前
CVPR 2025|基于视觉语言模型的零样本3D视觉定位
人工智能·深度学习·计算机视觉·3d·ai·语言模型·自然语言处理
金井PRATHAMA6 小时前
AI赋能训诂学:解码古籍智能新纪元
人工智能·自然语言处理·知识图谱
2401_8288906410 小时前
使用 BERT 实现意图理解和实体识别
人工智能·python·自然语言处理·bert·transformer
scx_link10 小时前
Word2Vec词嵌入技术和动态词嵌入技术
人工智能·自然语言处理·word2vec
知来者逆1 天前
视觉语言模型应用开发——Qwen 2.5 VL模型视频理解与定位能力深度解析及实践指南
人工智能·语言模型·自然语言处理·音视频·视觉语言模型·qwen 2.5 vl
金井PRATHAMA1 天前
超越模仿,探寻智能的本源:从人类认知机制到下一代自然语言处理
人工智能·自然语言处理·知识图谱
算法打盹中2 天前
基于树莓派与Jetson Nano集群的实验边缘设备上视觉语言模型(VLMs)的性能评估与实践探索
人工智能·计算机视觉·语言模型·自然语言处理·树莓派·多模态·jetson nano
跳跳糖炒酸奶2 天前
第六章、从transformer到nlp大模型:编码器-解码器模型 (Encoder-Decoder)
深度学习·自然语言处理·transformer
小杨勇敢飞2 天前
UNBIASED WATERMARK:大语言模型的无偏差水印
人工智能·语言模型·自然语言处理
m0_603888712 天前
Delta Activations A Representation for Finetuned Large Language Models
人工智能·ai·语言模型·自然语言处理·论文速览