抽取语料库索引语义向量并建milvus库

import random

import time

import os

import sys

from tqdm import tqdm

import numpy as np

import paddle

from paddle import inference

from paddlenlp.transformers import AutoModel, AutoTokenizer

from paddlenlp.data import Stack, Tuple, Pad

from paddlenlp.datasets import load_dataset

from paddlenlp.utils.log import logger

sys.path.append('.')

def convert_example(example,

tokenizer,

max_seq_length=512,

pad_to_max_seq_len=False):

result = []

for key, text in example.items():

encoded_inputs = tokenizer(text=text,

max_seq_len=max_seq_length,

pad_to_max_seq_len=pad_to_max_seq_len)

input_ids = encoded_inputs["input_ids"]

token_type_ids = encoded_inputs["token_type_ids"]

result += [input_ids, token_type_ids]

return result

model_dir='./output/yysy/'

corpus_file='./datasets/yysy/milvus/milvus_data_s.csv'

max_seq_length=64

batch_size=64

device='gpu'

cpu_threads=8

model_name_or_path='rocketqa-zh-base-query-encoder'

class Predictor(object):

def init(self,

model_dir,

device="gpu",

max_seq_length=128,

batch_size=32,

use_tensorrt=False,

precision="fp32",

cpu_threads=10,

enable_mkldnn=False):

self.max_seq_length = max_seq_length

self.batch_size = batch_size

model_file = model_dir + "inference.get_pooled_embedding.pdmodel"

params_file = model_dir + "inference.get_pooled_embedding.pdiparams"

if not os.path.exists(model_file):

raise ValueError("not find model file path {}".format(model_file))

if not os.path.exists(params_file):

raise ValueError("not find params file path {}".format(params_file))

config = paddle.inference.Config(model_file, params_file)

if device == "gpu":

config.enable_use_gpu(100, 0)

precision_map = {

"fp16": inference.PrecisionType.Half,

"fp32": inference.PrecisionType.Float32,

"int8": inference.PrecisionType.Int8

}

precision_mode = precision_map[precision]

if use_tensorrt:

config.enable_tensorrt_engine(max_batch_size=batch_size,

min_subgraph_size=30,

precision_mode=precision_mode)

elif device == "cpu":

config.disable_gpu()

if enable_mkldnn:

config.set_mkldnn_cache_capacity(10)

config.enable_mkldnn()

config.set_cpu_math_library_num_threads(cpu_threads)

elif device == "xpu":

config.enable_xpu(100)

config.switch_use_feed_fetch_ops(False)

self.predictor = paddle.inference.create_predictor(config)

self.input_handles = [

self.predictor.get_input_handle(name)

for name in self.predictor.get_input_names()

]

self.output_handle = self.predictor.get_output_handle(

self.predictor.get_output_names()[0])

def predict(self, data, tokenizer):

batchify_fn = lambda samples, fn=Tuple(

Pad(axis=0, pad_val=tokenizer.pad_token_id, dtype="int64"), # input

Pad(axis=0, pad_val=tokenizer.pad_token_type_id, dtype="int64"

), # segment

): fn(samples)

all_embeddings = []

examples = []

for idx, text in enumerate(tqdm(data)):

input_ids, segment_ids = convert_example(

text,

tokenizer,

max_seq_length=self.max_seq_length,

pad_to_max_seq_len=True)

examples.append((input_ids, segment_ids))

if (len(examples) >=self.batch_size):

input_ids, segment_ids = batchify_fn(examples)

self.input_handles[0].copy_from_cpu(input_ids)

self.input_handles[1].copy_from_cpu(segment_ids)

self.predictor.run()

logits = self.output_handle.copy_to_cpu()

all_embeddings.append(logits)

examples = []

if (len(examples) > 0):

input_ids, segment_ids = batchify_fn(examples)

self.input_handles[0].copy_from_cpu(input_ids)

self.input_handles[1].copy_from_cpu(segment_ids)

self.predictor.run()

logits = self.output_handle.copy_to_cpu()

all_embeddings.append(logits)

all_embeddings = np.concatenate(all_embeddings, axis=0)

np.save('yysy_corpus_embedding', all_embeddings)

def read_text(file_path):

file = open(file_path)

id2corpus = {}

for idx, data in enumerate(file.readlines()):

id2corpus[idx] = data.strip()

return id2corpus

predictor = Predictor(model_dir, device, max_seq_length, batch_size)

tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)

id2corpus = read_text(corpus_file)

corpus_list = [{idx: text} for idx, text in id2corpus.items()]#用来构建索引库的文本

predictor.predict(corpus_list, tokenizer)

MILVUS_HOST = '127.0.0.1'

MILVUS_PORT = 19530

data_dim = 256

top_k = 20

collection_name = 'literature_search'

partition_tag = 'partition_1'

embedding_name = 'embeddings'

index_config = {

"index_type": "IVF_FLAT",

"metric_type": "L2",

"params": {

"nlist": 1000

},

}

search_params = {

"metric_type": "L2",

"params": {

"nprobe": top_k

},

}

from pymilvus import (

connections,

utility,

FieldSchema,

CollectionSchema,

DataType,

Collection,

)

fmt = "\n=== {:30} ===\n"

text_max_len = 1000

fields = [

FieldSchema(name="pk",

dtype=DataType.INT64,

is_primary=True,#主键

auto_id=False,#不自动增长

max_length=100),#id

FieldSchema(name="text", dtype=DataType.VARCHAR, max_length=text_max_len),#text

FieldSchema(name="embeddings", dtype=DataType.FLOAT_VECTOR, dim=data_dim)#embedding

]

schema = CollectionSchema(fields, "Neural Search Index")

class VecToMilvus():#语义向量-->milvus

def init(self):

print(fmt.format("start connecting to Milvus"))

connections.connect("default", host=MILVUS_HOST, port=MILVUS_PORT)

self.collection = None

def has_collection(self, collection_name):

try:

has = utility.has_collection(collection_name)

print(f"Does collection {collection_name} exist in Milvus: {has}")

return has

except Exception as e:

print("Milvus has_table error:", e)

def creat_collection(self, collection_name):

try:

print(fmt.format("Create collection {}".format(collection_name)))

self.collection = Collection(collection_name,

schema,

consistency_level="Strong")

except Exception as e:

print("Milvus create collection error:", e)

def drop_collection(self, collection_name):

try:

utility.drop_collection(collection_name)

except Exception as e:

print("Milvus delete collection error:", e)

def create_index(self, index_name):

try:

print(fmt.format("Start Creating index"))

self.collection.create_index(index_name, index_config)

print(fmt.format("Start loading"))

self.collection.load()

except Exception as e:

print("Milvus create index error:", e)

def has_partition(self, partition_tag):

try:

result = self.collection.has_partition(partition_tag)

return result

except Exception as e:

print("Milvus has partition error: ", e)

def create_partition(self, partition_tag):

try:

self.collection.create_partition(partition_tag)

print('create partition {} successfully'.format(partition_tag))

except Exception as e:

print('Milvus create partition error: ', e)

def insert(self, entities, collection_name, index_name, partition_tag=None):

try:

if not self.has_collection(collection_name):

self.creat_collection(collection_name)

self.create_index(index_name)

else:

self.collection = Collection(collection_name)

if (partition_tag

is not None) and (not self.has_partition(partition_tag)):

self.create_partition(partition_tag)

self.collection.insert(entities, partition_name=partition_tag)

print(

f"Number of entities in Milvus: {self.collection.num_entities}"

) # check the num_entites

except Exception as e:

print("Milvus insert error:", e)

class RecallByMilvus():#从milvus召回向量

def init(self):

print(fmt.format("start connecting to Milvus"))

connections.connect("default", host=MILVUS_HOST, port=MILVUS_PORT)

self.collection = None

def get_collection(self, collection_name):

try:

print(fmt.format("Connect collection {}".format(collection_name)))

self.collection = Collection(collection_name)

except Exception as e:

print("Milvus create collection error:", e)

def search(self,

vectors,

embedding_name,

collection_name,

partition_names=[],

output_fields=[]):

try:

self.get_collection(collection_name)

result = self.collection.search(vectors,

embedding_name,

search_params,

limit=top_k,

partition_names=partition_names,

output_fields=output_fields)

return result

except Exception as e:

print('Milvus recall error: ', e)

data_path='./datasets/yysy/milvus/milvus_data_s.csv'

embedding_path='./yysy_corpus_embedding.npy'

index=18

batch_size=5000

def read_text(file_path):

file = open(file_path)

id2corpus = []

for idx, data in enumerate(file.readlines()):

id2corpus.append(data.strip())

return id2corpus

corpus_list_embed=read_text(data_path)

corpus_list_embed[:5]

embeddings = np.load(embedding_path)

embedding_ids = [i for i in range(embeddings.shape[0])]#嵌入ids

client = VecToMilvus()

client.has_collection(collection_name)

client.drop_collection(collection_name)

data_size = len(embedding_ids)

x=[corpus_list_embed[j][:1000]for j in range(10000, 15000,1)]#[:200]文本切片操作

max([len(i) for i in x])

for i in range(0, data_size, batch_size):

print(i)

for i in range(0, data_size, batch_size):#i:0-5000-10000-....

cur_end = i + batch_size

if (cur_end > data_size):#确保下标不越界

cur_end = data_size

batch_emb = embeddings[np.arange(i, cur_end)]#一个批次的嵌入向量

entities = [

j for j in range(i, cur_end, 1)\],#索引 \[corpus_list_embed\[j\]\[:text_max_len - 1\] for j in range(i, cur_end, 1)\],#文本 batch_emb #每个批次嵌入向量

client.insert(collection_name=collection_name,

entities=entities,

index_name=embedding_name,

partition_tag=partition_tag)

recall_client = RecallByMilvus()

embeddings = embeddings[np.arange(index, index + 1)]

time_start = time.time()# start

result = recall_client.search(embeddings,

embedding_name,

collection_name,

partition_names=[partition_tag],

output_fields=['pk', 'text'])

time_end = time.time()# end

sum_t = time_end - time_start

print('time cost', sum_t, 's')

for hits in result:

for hit in hits:

print(f"hit: {hit}, text field: {hit.entity.get('text')}")

相关推荐
阿正的梦工坊3 小时前
Megatron中--train-iters和--max_epochs两个参数介绍
人工智能·深度学习·自然语言处理
阿杰学AI4 小时前
AI核心知识80——大语言模型之Slow Thinking和Deep Reasoning(简洁且通俗易懂版)
人工智能·ai·语言模型·自然语言处理·aigc·慢思考·深度推理
阿杰学AI6 小时前
AI核心知识79——大语言模型之Knowledge Conflict(简洁且通俗易懂版)
人工智能·ai·语言模型·自然语言处理·aigc·rag·知识冲突
海绵宝宝de派小星6 小时前
传统NLP vs 深度学习NLP
人工智能·深度学习·ai·自然语言处理
vlln8 小时前
【论文速读】MUSE: 层次记忆和自我反思提升的 Agent
人工智能·语言模型·自然语言处理·ai agent
翱翔的苍鹰8 小时前
一个简单的法律问答机器人实现思路
人工智能·深度学习·语言模型·自然语言处理
翱翔的苍鹰9 小时前
当前主流的**开源大语言模型(LLM)的核心知识总结
人工智能·深度学习·自然语言处理
renhongxia19 小时前
知识图谱如何在制造业实际落地应用
人工智能·语言模型·自然语言处理·aigc·知识图谱
翱翔的苍鹰10 小时前
法律问答机器人”技术方案”的实现
人工智能·rnn·深度学习·自然语言处理
查无此人byebye10 小时前
从零解读CLIP核心源码:PyTorch实现版逐行解析
人工智能·pytorch·python·深度学习·机器学习·自然语言处理·音视频