抽取语料库索引语义向量并建milvus库

import random

import time

import os

import sys

from tqdm import tqdm

import numpy as np

import paddle

from paddle import inference

from paddlenlp.transformers import AutoModel, AutoTokenizer

from paddlenlp.data import Stack, Tuple, Pad

from paddlenlp.datasets import load_dataset

from paddlenlp.utils.log import logger

sys.path.append('.')

def convert_example(example,

tokenizer,

max_seq_length=512,

pad_to_max_seq_len=False):

result = []

for key, text in example.items():

encoded_inputs = tokenizer(text=text,

max_seq_len=max_seq_length,

pad_to_max_seq_len=pad_to_max_seq_len)

input_ids = encoded_inputs["input_ids"]

token_type_ids = encoded_inputs["token_type_ids"]

result += [input_ids, token_type_ids]

return result

model_dir='./output/yysy/'

corpus_file='./datasets/yysy/milvus/milvus_data_s.csv'

max_seq_length=64

batch_size=64

device='gpu'

cpu_threads=8

model_name_or_path='rocketqa-zh-base-query-encoder'

class Predictor(object):

def init(self,

model_dir,

device="gpu",

max_seq_length=128,

batch_size=32,

use_tensorrt=False,

precision="fp32",

cpu_threads=10,

enable_mkldnn=False):

self.max_seq_length = max_seq_length

self.batch_size = batch_size

model_file = model_dir + "inference.get_pooled_embedding.pdmodel"

params_file = model_dir + "inference.get_pooled_embedding.pdiparams"

if not os.path.exists(model_file):

raise ValueError("not find model file path {}".format(model_file))

if not os.path.exists(params_file):

raise ValueError("not find params file path {}".format(params_file))

config = paddle.inference.Config(model_file, params_file)

if device == "gpu":

config.enable_use_gpu(100, 0)

precision_map = {

"fp16": inference.PrecisionType.Half,

"fp32": inference.PrecisionType.Float32,

"int8": inference.PrecisionType.Int8

}

precision_mode = precision_map[precision]

if use_tensorrt:

config.enable_tensorrt_engine(max_batch_size=batch_size,

min_subgraph_size=30,

precision_mode=precision_mode)

elif device == "cpu":

config.disable_gpu()

if enable_mkldnn:

config.set_mkldnn_cache_capacity(10)

config.enable_mkldnn()

config.set_cpu_math_library_num_threads(cpu_threads)

elif device == "xpu":

config.enable_xpu(100)

config.switch_use_feed_fetch_ops(False)

self.predictor = paddle.inference.create_predictor(config)

self.input_handles = [

self.predictor.get_input_handle(name)

for name in self.predictor.get_input_names()

]

self.output_handle = self.predictor.get_output_handle(

self.predictor.get_output_names()[0])

def predict(self, data, tokenizer):

batchify_fn = lambda samples, fn=Tuple(

Pad(axis=0, pad_val=tokenizer.pad_token_id, dtype="int64"), # input

Pad(axis=0, pad_val=tokenizer.pad_token_type_id, dtype="int64"

), # segment

): fn(samples)

all_embeddings = []

examples = []

for idx, text in enumerate(tqdm(data)):

input_ids, segment_ids = convert_example(

text,

tokenizer,

max_seq_length=self.max_seq_length,

pad_to_max_seq_len=True)

examples.append((input_ids, segment_ids))

if (len(examples) >=self.batch_size):

input_ids, segment_ids = batchify_fn(examples)

self.input_handles[0].copy_from_cpu(input_ids)

self.input_handles[1].copy_from_cpu(segment_ids)

self.predictor.run()

logits = self.output_handle.copy_to_cpu()

all_embeddings.append(logits)

examples = []

if (len(examples) > 0):

input_ids, segment_ids = batchify_fn(examples)

self.input_handles[0].copy_from_cpu(input_ids)

self.input_handles[1].copy_from_cpu(segment_ids)

self.predictor.run()

logits = self.output_handle.copy_to_cpu()

all_embeddings.append(logits)

all_embeddings = np.concatenate(all_embeddings, axis=0)

np.save('yysy_corpus_embedding', all_embeddings)

def read_text(file_path):

file = open(file_path)

id2corpus = {}

for idx, data in enumerate(file.readlines()):

id2corpus[idx] = data.strip()

return id2corpus

predictor = Predictor(model_dir, device, max_seq_length, batch_size)

tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)

id2corpus = read_text(corpus_file)

corpus_list = [{idx: text} for idx, text in id2corpus.items()]#用来构建索引库的文本

predictor.predict(corpus_list, tokenizer)

MILVUS_HOST = '127.0.0.1'

MILVUS_PORT = 19530

data_dim = 256

top_k = 20

collection_name = 'literature_search'

partition_tag = 'partition_1'

embedding_name = 'embeddings'

index_config = {

"index_type": "IVF_FLAT",

"metric_type": "L2",

"params": {

"nlist": 1000

},

}

search_params = {

"metric_type": "L2",

"params": {

"nprobe": top_k

},

}

from pymilvus import (

connections,

utility,

FieldSchema,

CollectionSchema,

DataType,

Collection,

)

fmt = "\n=== {:30} ===\n"

text_max_len = 1000

fields = [

FieldSchema(name="pk",

dtype=DataType.INT64,

is_primary=True,#主键

auto_id=False,#不自动增长

max_length=100),#id

FieldSchema(name="text", dtype=DataType.VARCHAR, max_length=text_max_len),#text

FieldSchema(name="embeddings", dtype=DataType.FLOAT_VECTOR, dim=data_dim)#embedding

]

schema = CollectionSchema(fields, "Neural Search Index")

class VecToMilvus():#语义向量-->milvus

def init(self):

print(fmt.format("start connecting to Milvus"))

connections.connect("default", host=MILVUS_HOST, port=MILVUS_PORT)

self.collection = None

def has_collection(self, collection_name):

try:

has = utility.has_collection(collection_name)

print(f"Does collection {collection_name} exist in Milvus: {has}")

return has

except Exception as e:

print("Milvus has_table error:", e)

def creat_collection(self, collection_name):

try:

print(fmt.format("Create collection {}".format(collection_name)))

self.collection = Collection(collection_name,

schema,

consistency_level="Strong")

except Exception as e:

print("Milvus create collection error:", e)

def drop_collection(self, collection_name):

try:

utility.drop_collection(collection_name)

except Exception as e:

print("Milvus delete collection error:", e)

def create_index(self, index_name):

try:

print(fmt.format("Start Creating index"))

self.collection.create_index(index_name, index_config)

print(fmt.format("Start loading"))

self.collection.load()

except Exception as e:

print("Milvus create index error:", e)

def has_partition(self, partition_tag):

try:

result = self.collection.has_partition(partition_tag)

return result

except Exception as e:

print("Milvus has partition error: ", e)

def create_partition(self, partition_tag):

try:

self.collection.create_partition(partition_tag)

print('create partition {} successfully'.format(partition_tag))

except Exception as e:

print('Milvus create partition error: ', e)

def insert(self, entities, collection_name, index_name, partition_tag=None):

try:

if not self.has_collection(collection_name):

self.creat_collection(collection_name)

self.create_index(index_name)

else:

self.collection = Collection(collection_name)

if (partition_tag

is not None) and (not self.has_partition(partition_tag)):

self.create_partition(partition_tag)

self.collection.insert(entities, partition_name=partition_tag)

print(

f"Number of entities in Milvus: {self.collection.num_entities}"

) # check the num_entites

except Exception as e:

print("Milvus insert error:", e)

class RecallByMilvus():#从milvus召回向量

def init(self):

print(fmt.format("start connecting to Milvus"))

connections.connect("default", host=MILVUS_HOST, port=MILVUS_PORT)

self.collection = None

def get_collection(self, collection_name):

try:

print(fmt.format("Connect collection {}".format(collection_name)))

self.collection = Collection(collection_name)

except Exception as e:

print("Milvus create collection error:", e)

def search(self,

vectors,

embedding_name,

collection_name,

partition_names=[],

output_fields=[]):

try:

self.get_collection(collection_name)

result = self.collection.search(vectors,

embedding_name,

search_params,

limit=top_k,

partition_names=partition_names,

output_fields=output_fields)

return result

except Exception as e:

print('Milvus recall error: ', e)

data_path='./datasets/yysy/milvus/milvus_data_s.csv'

embedding_path='./yysy_corpus_embedding.npy'

index=18

batch_size=5000

def read_text(file_path):

file = open(file_path)

id2corpus = []

for idx, data in enumerate(file.readlines()):

id2corpus.append(data.strip())

return id2corpus

corpus_list_embed=read_text(data_path)

corpus_list_embed[:5]

embeddings = np.load(embedding_path)

embedding_ids = [i for i in range(embeddings.shape[0])]#嵌入ids

client = VecToMilvus()

client.has_collection(collection_name)

client.drop_collection(collection_name)

data_size = len(embedding_ids)

x=[corpus_list_embed[j][:1000]for j in range(10000, 15000,1)]#[:200]文本切片操作

max([len(i) for i in x])

for i in range(0, data_size, batch_size):

print(i)

for i in range(0, data_size, batch_size):#i:0-5000-10000-....

cur_end = i + batch_size

if (cur_end > data_size):#确保下标不越界

cur_end = data_size

batch_emb = embeddings[np.arange(i, cur_end)]#一个批次的嵌入向量

entities = [

j for j in range(i, cur_end, 1)\],#索引 \[corpus_list_embed\[j\]\[:text_max_len - 1\] for j in range(i, cur_end, 1)\],#文本 batch_emb #每个批次嵌入向量

client.insert(collection_name=collection_name,

entities=entities,

index_name=embedding_name,

partition_tag=partition_tag)

recall_client = RecallByMilvus()

embeddings = embeddings[np.arange(index, index + 1)]

time_start = time.time()# start

result = recall_client.search(embeddings,

embedding_name,

collection_name,

partition_names=[partition_tag],

output_fields=['pk', 'text'])

time_end = time.time()# end

sum_t = time_end - time_start

print('time cost', sum_t, 's')

for hits in result:

for hit in hits:

print(f"hit: {hit}, text field: {hit.entity.get('text')}")

相关推荐
晨曦5432104 小时前
中文分词与数据可视化02
自然语言处理·中文分词
Jackson@ML5 小时前
一分钟了解大语言模型(LLMs)
人工智能·语言模型·自然语言处理
python1567 小时前
OpenWebUI新突破,MCPO框架解锁MCP工具新玩法
人工智能·语言模型·自然语言处理
tyatyatya8 小时前
MATLAB 自然语言处理入门教程
开发语言·matlab·自然语言处理
取啥都被占用9 小时前
milvus+flask山寨《从零构建向量数据库》第7章case2
flask·milvus·向量数据库
游王子10 小时前
Milvus(24):全文搜索、文本匹配
milvus
ㄣ知冷煖★12 小时前
【论文阅读】A Survey on Multimodal Large Language Models
人工智能·语言模型·自然语言处理
武子康13 小时前
大语言模型 11 - 从0开始训练GPT 0.25B参数量 MiniMind2 准备数据与训练模型 DPO直接偏好优化
人工智能·gpt·ai·语言模型·自然语言处理
武子康17 小时前
大语言模型 10 - 从0开始训练GPT 0.25B参数量 补充知识之模型架构 MoE、ReLU、FFN、MixFFN
大数据·人工智能·gpt·ai·语言模型·自然语言处理
MARS_AI_19 小时前
智能呼叫系统中的NLP意图理解:核心技术解析与实战
人工智能·自然语言处理·nlp·交互·信息与通信