opencv 处理图像去噪的几种方法

OpenCV 提供了多种图像去噪的方法,以下是一些常见的去噪技术以及相应的 Python 代码示例:

  1. 均值滤波:使用像素邻域的灰度均值代替该像素的值。

    python 复制代码
    import cv2
    import numpy as np
    import matplotlib.pyplot as plt
    
    img = cv2.imread("4.jpg")
    result = cv2.blur(img, (5, 5))  # 传入读取的图像和核尺寸
    cv2.imshow("Noise", img)
    cv2.imshow("Mean Filter", result)
    cv2.waitKey(0)
  2. 高斯滤波:适用于消除高斯噪声,通过加权平均邻域内的像素值来计算中心像素的新值。

    python 复制代码
    result = cv2.GaussianBlur(img, (5, 5), 0)  # 高斯核尺寸和标准差
    cv2.imshow("Gaussian Filter", result)
  3. 中值滤波:选择一个含有奇数点的窗口,取窗口中像素灰度值的中位数来代替中心像素的值,有效去除椒盐噪声。

    python 复制代码
    result = cv2.medianBlur(img, 5)  # 核大小必须是大于1的奇数
    cv2.imshow("Median Filter", result)
  4. 方框滤波:类似于均值滤波,但可以选择是否对结果进行归一化。

    python 复制代码
    result = cv2.boxFilter(img, -1, (5, 5), normalize=True)  # normalize=True 进行归一化
    cv2.imshow("Box Filter", result)
  5. 双边滤波:在滤波时同时考虑空间邻近度与像素值相似度,保留边缘信息。

    python 复制代码
    result = cv2.bilateralFilter(img, 9, 75, 75)  # 直径、颜色空间的标准差和坐标空间的标准差
    cv2.imshow("Bilateral Filter", result)
  6. 非局部均值去噪(NLM):使用图像中的所有像素进行去噪,根据相似度加权平均。

    python 复制代码
    dst = cv2.fastNlMeansDenoisingColored(img, None, 10, 10, 7, 21)
    plt.subplot(121),plt.imshow(img)
    plt.subplot(122),plt.imshow(dst)
    plt.show()
  7. 高通滤波:保留高频部分,常用于边缘增强。

    python 复制代码
    x = cv2.Sobel(img, cv2.CV_16S, 1, 0)
    y = cv2.Sobel(img, cv2.CV_16S, 0, 1)
    absx = cv2.convertScaleAbs(x)
    absy = cv2.convertScaleAbs(y)
    dist = cv2.addWeighted(absx, 0.5, absy, 0.5, 0)
    cv2.imshow('High Pass Filter', dist)

请注意,上述代码中的 img 变量需要先加载一个图像,cv2.imread 函数用于读取图像,cv2.imshow 用于显示图像,cv2.waitKey(0) 用于等待用户按键操作,plt.show() 用于显示 Matplotlib 图像。在实际使用中,需要根据具体情况调整核尺寸、标准差等参数。

相关推荐
aaaa_a13312 分钟前
The lllustrated Transformer——阅读笔记
人工智能·深度学习·transformer
jinxinyuuuus17 分钟前
文件格式转换工具:数据序列化、Web Worker与离线数据处理
人工智能·自动化
言之。23 分钟前
Dropbear远程连接
python
易天ETU23 分钟前
短距离光模块 COB 封装与同轴工艺的区别有哪些
网络·人工智能·光模块·光通信·cob·qsfp28·100g
秋刀鱼 ..27 分钟前
第二届光电科学与智能传感国际学术会议(ICOIS 2026)
运维·人工智能·科技·机器学习·制造
郭庆汝28 分钟前
(九)自然语言处理笔记——命名实体的识别
人工智能·自然语言处理·命名实体识别
Oxo Security35 分钟前
【AI安全】拆解 OWASP LLM Top 10 攻击架构图
人工智能·安全
Math_teacher_fan36 分钟前
第二篇:核心几何工具类详解
人工智能·算法
yingxiao88838 分钟前
11月海外AI应用市场:“AI轻工具”贡献最大新增;“通用型AI助手”用户留存强劲
人工智能·ai·ai应用