opencv 处理图像去噪的几种方法

OpenCV 提供了多种图像去噪的方法,以下是一些常见的去噪技术以及相应的 Python 代码示例:

  1. 均值滤波:使用像素邻域的灰度均值代替该像素的值。

    python 复制代码
    import cv2
    import numpy as np
    import matplotlib.pyplot as plt
    
    img = cv2.imread("4.jpg")
    result = cv2.blur(img, (5, 5))  # 传入读取的图像和核尺寸
    cv2.imshow("Noise", img)
    cv2.imshow("Mean Filter", result)
    cv2.waitKey(0)
  2. 高斯滤波:适用于消除高斯噪声,通过加权平均邻域内的像素值来计算中心像素的新值。

    python 复制代码
    result = cv2.GaussianBlur(img, (5, 5), 0)  # 高斯核尺寸和标准差
    cv2.imshow("Gaussian Filter", result)
  3. 中值滤波:选择一个含有奇数点的窗口,取窗口中像素灰度值的中位数来代替中心像素的值,有效去除椒盐噪声。

    python 复制代码
    result = cv2.medianBlur(img, 5)  # 核大小必须是大于1的奇数
    cv2.imshow("Median Filter", result)
  4. 方框滤波:类似于均值滤波,但可以选择是否对结果进行归一化。

    python 复制代码
    result = cv2.boxFilter(img, -1, (5, 5), normalize=True)  # normalize=True 进行归一化
    cv2.imshow("Box Filter", result)
  5. 双边滤波:在滤波时同时考虑空间邻近度与像素值相似度,保留边缘信息。

    python 复制代码
    result = cv2.bilateralFilter(img, 9, 75, 75)  # 直径、颜色空间的标准差和坐标空间的标准差
    cv2.imshow("Bilateral Filter", result)
  6. 非局部均值去噪(NLM):使用图像中的所有像素进行去噪,根据相似度加权平均。

    python 复制代码
    dst = cv2.fastNlMeansDenoisingColored(img, None, 10, 10, 7, 21)
    plt.subplot(121),plt.imshow(img)
    plt.subplot(122),plt.imshow(dst)
    plt.show()
  7. 高通滤波:保留高频部分,常用于边缘增强。

    python 复制代码
    x = cv2.Sobel(img, cv2.CV_16S, 1, 0)
    y = cv2.Sobel(img, cv2.CV_16S, 0, 1)
    absx = cv2.convertScaleAbs(x)
    absy = cv2.convertScaleAbs(y)
    dist = cv2.addWeighted(absx, 0.5, absy, 0.5, 0)
    cv2.imshow('High Pass Filter', dist)

请注意,上述代码中的 img 变量需要先加载一个图像,cv2.imread 函数用于读取图像,cv2.imshow 用于显示图像,cv2.waitKey(0) 用于等待用户按键操作,plt.show() 用于显示 Matplotlib 图像。在实际使用中,需要根据具体情况调整核尺寸、标准差等参数。

相关推荐
小糖学代码3 分钟前
LLM系列:1.python入门:3.布尔型对象
linux·开发语言·python
央链知播10 分钟前
中国移联元宇宙与人工智能产业委联席秘书长叶毓睿受邀到北京联合大学做大模型智能体现状与趋势专题报告
人工智能·科技·业界资讯
人工智能培训16 分钟前
卷积神经网络(CNN)详细介绍及其原理详解(2)
人工智能·神经网络·cnn
Data_agent21 分钟前
1688获得1688店铺详情API,python请求示例
开发语言·爬虫·python
懷淰メ36 分钟前
【AI加持】基于PyQt5+YOLOv8+DeepSeek的输电隐患检测系统(详细介绍)
yolo·目标检测·计算机视觉·pyqt·deepseek·监测系统·输电隐患
YIN_尹43 分钟前
目标检测模型量化加速在 openEuler 上的实现
人工智能·目标检测·计算机视觉
mys55181 小时前
杨建允:企业应对AI搜索趋势的实操策略
人工智能·geo·ai搜索优化·ai引擎优化
小毅&Nora1 小时前
【人工智能】【深度学习】 ⑦ 从零开始AI学习路径:从Python到大模型的实战指南
人工智能·深度学习·学习
牛阿大1 小时前
关于前馈神经网络
人工智能·深度学习·神经网络
2的n次方_1 小时前
从0到1打造专属数字人:魔珐星云SDK接入实战演示
人工智能·具身智能·魔珐星云