opencv 处理图像去噪的几种方法

OpenCV 提供了多种图像去噪的方法,以下是一些常见的去噪技术以及相应的 Python 代码示例:

  1. 均值滤波:使用像素邻域的灰度均值代替该像素的值。

    python 复制代码
    import cv2
    import numpy as np
    import matplotlib.pyplot as plt
    
    img = cv2.imread("4.jpg")
    result = cv2.blur(img, (5, 5))  # 传入读取的图像和核尺寸
    cv2.imshow("Noise", img)
    cv2.imshow("Mean Filter", result)
    cv2.waitKey(0)
  2. 高斯滤波:适用于消除高斯噪声,通过加权平均邻域内的像素值来计算中心像素的新值。

    python 复制代码
    result = cv2.GaussianBlur(img, (5, 5), 0)  # 高斯核尺寸和标准差
    cv2.imshow("Gaussian Filter", result)
  3. 中值滤波:选择一个含有奇数点的窗口,取窗口中像素灰度值的中位数来代替中心像素的值,有效去除椒盐噪声。

    python 复制代码
    result = cv2.medianBlur(img, 5)  # 核大小必须是大于1的奇数
    cv2.imshow("Median Filter", result)
  4. 方框滤波:类似于均值滤波,但可以选择是否对结果进行归一化。

    python 复制代码
    result = cv2.boxFilter(img, -1, (5, 5), normalize=True)  # normalize=True 进行归一化
    cv2.imshow("Box Filter", result)
  5. 双边滤波:在滤波时同时考虑空间邻近度与像素值相似度,保留边缘信息。

    python 复制代码
    result = cv2.bilateralFilter(img, 9, 75, 75)  # 直径、颜色空间的标准差和坐标空间的标准差
    cv2.imshow("Bilateral Filter", result)
  6. 非局部均值去噪(NLM):使用图像中的所有像素进行去噪,根据相似度加权平均。

    python 复制代码
    dst = cv2.fastNlMeansDenoisingColored(img, None, 10, 10, 7, 21)
    plt.subplot(121),plt.imshow(img)
    plt.subplot(122),plt.imshow(dst)
    plt.show()
  7. 高通滤波:保留高频部分,常用于边缘增强。

    python 复制代码
    x = cv2.Sobel(img, cv2.CV_16S, 1, 0)
    y = cv2.Sobel(img, cv2.CV_16S, 0, 1)
    absx = cv2.convertScaleAbs(x)
    absy = cv2.convertScaleAbs(y)
    dist = cv2.addWeighted(absx, 0.5, absy, 0.5, 0)
    cv2.imshow('High Pass Filter', dist)

请注意,上述代码中的 img 变量需要先加载一个图像,cv2.imread 函数用于读取图像,cv2.imshow 用于显示图像,cv2.waitKey(0) 用于等待用户按键操作,plt.show() 用于显示 Matplotlib 图像。在实际使用中,需要根据具体情况调整核尺寸、标准差等参数。

相关推荐
新知图书1 小时前
FastGPT版本体系概览
人工智能·ai agent·智能体·大模型应用开发·大模型应用
老蒋新思维1 小时前
创客匠人 2025 全球创始人 IP+AI 万人高峰论坛:AI 赋能下知识变现与 IP 变现的实践沉淀与行业启示
大数据·人工智能·网络协议·tcp/ip·重构·创始人ip·创客匠人
计算机毕设小月哥1 小时前
【Hadoop+Spark+python毕设】中风患者数据可视化分析系统、计算机毕业设计、包括数据爬取、Spark、数据分析、数据可视化、Hadoop
后端·python·mysql
Keep_Trying_Go1 小时前
基于Zero-Shot的目标计数算法详解(Open-world Text-specified Object Counting)
人工智能·pytorch·python·算法·多模态·目标统计
计算机毕设匠心工作室2 小时前
【python大数据毕设实战】强迫症特征与影响因素数据分析系统、Hadoop、计算机毕业设计、包括数据爬取、数据分析、数据可视化、机器学习、实战教学
后端·python·mysql
AKAMAI2 小时前
Akamai 宣布收购功能即服务公司 Fermyon
人工智能·云计算
河南博为智能科技有限公司2 小时前
高集成度国产八串口联网服务器:工业级多设备联网解决方案
大数据·运维·服务器·数据库·人工智能·物联网
光路科技2 小时前
人工智能时代,工业以太网正在“进化”成什么样?
人工智能