opencv 处理图像去噪的几种方法

OpenCV 提供了多种图像去噪的方法,以下是一些常见的去噪技术以及相应的 Python 代码示例:

  1. 均值滤波:使用像素邻域的灰度均值代替该像素的值。

    python 复制代码
    import cv2
    import numpy as np
    import matplotlib.pyplot as plt
    
    img = cv2.imread("4.jpg")
    result = cv2.blur(img, (5, 5))  # 传入读取的图像和核尺寸
    cv2.imshow("Noise", img)
    cv2.imshow("Mean Filter", result)
    cv2.waitKey(0)
  2. 高斯滤波:适用于消除高斯噪声,通过加权平均邻域内的像素值来计算中心像素的新值。

    python 复制代码
    result = cv2.GaussianBlur(img, (5, 5), 0)  # 高斯核尺寸和标准差
    cv2.imshow("Gaussian Filter", result)
  3. 中值滤波:选择一个含有奇数点的窗口,取窗口中像素灰度值的中位数来代替中心像素的值,有效去除椒盐噪声。

    python 复制代码
    result = cv2.medianBlur(img, 5)  # 核大小必须是大于1的奇数
    cv2.imshow("Median Filter", result)
  4. 方框滤波:类似于均值滤波,但可以选择是否对结果进行归一化。

    python 复制代码
    result = cv2.boxFilter(img, -1, (5, 5), normalize=True)  # normalize=True 进行归一化
    cv2.imshow("Box Filter", result)
  5. 双边滤波:在滤波时同时考虑空间邻近度与像素值相似度,保留边缘信息。

    python 复制代码
    result = cv2.bilateralFilter(img, 9, 75, 75)  # 直径、颜色空间的标准差和坐标空间的标准差
    cv2.imshow("Bilateral Filter", result)
  6. 非局部均值去噪(NLM):使用图像中的所有像素进行去噪,根据相似度加权平均。

    python 复制代码
    dst = cv2.fastNlMeansDenoisingColored(img, None, 10, 10, 7, 21)
    plt.subplot(121),plt.imshow(img)
    plt.subplot(122),plt.imshow(dst)
    plt.show()
  7. 高通滤波:保留高频部分,常用于边缘增强。

    python 复制代码
    x = cv2.Sobel(img, cv2.CV_16S, 1, 0)
    y = cv2.Sobel(img, cv2.CV_16S, 0, 1)
    absx = cv2.convertScaleAbs(x)
    absy = cv2.convertScaleAbs(y)
    dist = cv2.addWeighted(absx, 0.5, absy, 0.5, 0)
    cv2.imshow('High Pass Filter', dist)

请注意,上述代码中的 img 变量需要先加载一个图像,cv2.imread 函数用于读取图像,cv2.imshow 用于显示图像,cv2.waitKey(0) 用于等待用户按键操作,plt.show() 用于显示 Matplotlib 图像。在实际使用中,需要根据具体情况调整核尺寸、标准差等参数。

相关推荐
浪浪山_大橙子3 分钟前
使用Electron+Vue3开发Qwen3 2B桌面应用:从想法到实现的完整指南
前端·人工智能
亚马逊云开发者3 分钟前
【Agentic AI for Data系列】Kiro实战:DuckDB vs Spark技术选型全流程
人工智能
QT 小鲜肉3 分钟前
【孙子兵法之下篇】010. 孙子兵法·地形篇
人工智能·笔记·读书·孙子兵法
Jay20021114 分钟前
【机器学习】30 基于内容的过滤算法
人工智能·算法·机器学习
爱打代码的小林15 分钟前
python基础(pandas库)
服务器·python·pandas
极客BIM工作室16 分钟前
ControlNet里的“隐形连接器”:零卷积(Zero Convolution)的工作流程
人工智能·机器学习
北京耐用通信17 分钟前
阀岛的“超级大脑”:耐达讯自动化网关让EtherNet/IP转DeviceNet“说同一种语言”
人工智能·物联网·网络协议·网络安全·自动化·信息与通信
shenzhenNBA17 分钟前
如何在python文件中使用日志功能?简单版本
java·前端·python·日志·log
泡泡茶壶_ovo28 分钟前
PixCLIP:通过任意粒度像素-文本对齐学习实现细粒度视觉语言理解
人工智能·计算机视觉·对比学习·imagecaptioning