人工智能、机器学习、神经网络、深度学习和卷积神经网络的概念和关系

人工智能( Artificial Intelligence,缩写为AI)--又称为机器智能,是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。

人工智能是智能学科重要的组成部分,它企图了解智能的实质,并生产出一种新的能以与人类智能相似的方式做出反应的智能机器。人工智能的研究领域十分广阔,主要包括机器人、语言识别、图像识别自然语言处理专家系统、机器学习,计算机视觉等。

机器 学习 (Machine Learning,缩写为ML ) --是专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。机器学习是人工智能核心,是使计算机具有智能的根本途径。

深度学习 Deep Learning ,缩写为DL --深度学习的概念源于人工神经网络的研究,含多个隐藏层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的有效表示,而这种使用相对较短、稠密的向量表示叫做分布式特征表示(也可以称为嵌入式表示)。研究深度学习的动机在于建立模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本等。深度学习是机器学习的一种,而机器学习是实现人工智能的必经路径。

****人工神经网络(Artificial Neural Net,缩写为ANN)--****简称神经网络,是一种模拟人脑的神经网络以期能够实现类人工智能的机器学习技术。神经网络是一种运算模型,由大量的节点(或称神经元)之间相互联接构成。每个节点代表一种特定的输出函数,称为激励函数(activation function)。每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重,这相当于人工神经网络的记忆。网络的输出则依网络的连接方式,权重值和激励函数的不同而不同。而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。

卷积神经网络(Convolutional Neural Networks, CNN) ****--****是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度学习的代表算法之一。卷积神经网络仿造生物的视知觉(visual perception)机制构建,可以进行监督学习和非监督学习。卷积神经网络的结构主要由以下几个部分组成:输入层,卷积层,池化层,激活函数层,全连接层和输出层。

人工智能、机器学习、神经网络、深度学习和卷积神经网络的关系可以用下图概略表示:

相关推荐
LCG米19 小时前
从训练到部署:基于PyTorch与TensorFlow Lite的端侧AI花卉分类系统完整指南
人工智能·pytorch·tensorflow
冴羽19 小时前
太好看了!3 个动漫变真人 Nano Banana Pro 提示词
前端·人工智能·aigc
悟纤19 小时前
Suno 创作《亲爱的你》歌词模式全流程制作 | 从零开始用Suno Ai | 第4篇
人工智能·suno·suno ai
mqiqe19 小时前
【AI】Weaviate向量数据库详细部署安装应用
数据库·人工智能
AI生成未来19 小时前
ICCV 2025 | 北大王选所推出AnyPortal:像素级操控视频背景,前景细节100%保留!
人工智能·扩散模型·视频编辑·视频生成
jixunwulian19 小时前
边缘计算网关在空压机数据采集与远程运维中的解决方案
运维·人工智能·边缘计算
kida_yuan19 小时前
【从零开始】19. 模型实测与验证
人工智能·llm
zl_vslam19 小时前
SLAM中的非线性优-3D图优化之相对位姿Between Factor(七)
人工智能·算法·计算机视觉·3d
源码技术栈19 小时前
Java智能诊所管理系统源码 SaaS云门诊运维平台源码
java·大数据·运维·人工智能·源码·诊所·门诊
The Straggling Crow19 小时前
理解训练 vs 推理时对计算图、内存、精度的不同要求
人工智能