昇思25天学习打卡营第12天|应用实践之基于MindSpore通过GPT实现情感分类

基本介绍

今天的应用实践是基于MindSpore通过GPT实现情感分类,这与之前的使用BERT模型实现情绪分类有异曲同工之妙,本次使用的模型是OpenAI开源的GPT,数据集是MindNLP内置的数据集imdb。我们将会使用该数据集对GPT进行训练,然后进行测试。由于数据集是内置的数据集,可以直接进行加载即可,若本地没有该数据集,则会先下载,再加载到内存,具体代码如下:

python 复制代码
imdb_ds = load_dataset('imdb', split=['train', 'test'])
imdb_train = imdb_ds['train']
imdb_test = imdb_ds['test']

数据集一般不会直接符合模型的输入,所以要对数据集进行预处理,主要预处理就是batch划分和Token化,处理完毕进行数据集划分即可。具体代码如下:

python 复制代码
import numpy as np

def process_dataset(dataset, tokenizer, max_seq_len=512, batch_size=4, shuffle=False):
    is_ascend = mindspore.get_context('device_target') == 'Ascend'
    def tokenize(text):
        if is_ascend:
            tokenized = tokenizer(text, padding='max_length', truncation=True, max_length=max_seq_len)
        else:
            tokenized = tokenizer(text, truncation=True, max_length=max_seq_len)
        return tokenized['input_ids'], tokenized['attention_mask']

    if shuffle:
        dataset = dataset.shuffle(batch_size)

    # map dataset
    dataset = dataset.map(operations=[tokenize], input_columns="text", output_columns=['input_ids', 'attention_mask'])
    dataset = dataset.map(operations=transforms.TypeCast(mindspore.int32), input_columns="label", output_columns="labels")
    # batch dataset
    if is_ascend:
        dataset = dataset.batch(batch_size)
    else:
        dataset = dataset.padded_batch(batch_size, pad_info={'input_ids': (None, tokenizer.pad_token_id),
                                                             'attention_mask': (None, 0)})

    return dataset


from mindnlp.transformers import GPTTokenizer
# tokenizer
gpt_tokenizer = GPTTokenizer.from_pretrained('openai-gpt')

# add sepcial token: <PAD>
special_tokens_dict = {
    "bos_token": "<bos>",
    "eos_token": "<eos>",
    "pad_token": "<pad>",
}
num_added_toks = gpt_tokenizer.add_special_tokens(special_tokens_dict)

# split train dataset into train and valid datasets
imdb_train, imdb_val = imdb_train.split([0.7, 0.3])


dataset_train = process_dataset(imdb_train, gpt_tokenizer, shuffle=True)
dataset_val = process_dataset(imdb_val, gpt_tokenizer)
dataset_test = process_dataset(imdb_test, gpt_tokenizer)

有了数据集,就需要模型,而模型是一个开源模型,MindNLP可以很方便加载该模型,加载了模型,配置训练相关参数,然后就可以训练模型了,具体代码如下:

python 复制代码
# set bert config and define parameters for training
model = GPTForSequenceClassification.from_pretrained('openai-gpt', num_labels=2)
model.config.pad_token_id = gpt_tokenizer.pad_token_id
model.resize_token_embeddings(model.config.vocab_size + 3)

optimizer = nn.Adam(model.trainable_params(), learning_rate=2e-5)

metric = Accuracy()

# define callbacks to save checkpoints
ckpoint_cb = CheckpointCallback(save_path='checkpoint', ckpt_name='gpt_imdb_finetune', epochs=1, keep_checkpoint_max=2)
best_model_cb = BestModelCallback(save_path='checkpoint', ckpt_name='gpt_imdb_finetune_best', auto_load=True)

trainer = Trainer(network=model, train_dataset=dataset_train,
                  eval_dataset=dataset_train, metrics=metric,
                  epochs=1, optimizer=optimizer, callbacks=[ckpoint_cb, best_model_cb],
                  jit=False)

trainer.run(tgt_columns="labels")

GPT的数据量比GPT2少很多,训练+验证大概用了1个小时即可

训练完毕,可使用测试集进行测试,看模型效果,测试结果如下:

Jupyter运行情况

相关推荐
奶黄小甜包3 分钟前
C语言零基础第18讲:自定义类型—结构体
c语言·数据结构·笔记·学习
猫头虎13 分钟前
猫头虎AI分享|一款Coze、Dify类开源AI应用超级智能体快速构建工具:FastbuildAI
人工智能·开源·prompt·github·aigc·ai编程·ai-native
重启的码农30 分钟前
ggml 介绍 (6) 后端 (ggml_backend)
c++·人工智能·神经网络
重启的码农30 分钟前
ggml介绍 (7)后端缓冲区 (ggml_backend_buffer)
c++·人工智能·神经网络
数据智能老司机32 分钟前
面向企业的图学习扩展——图简介
人工智能·机器学习·ai编程
mit6.8241 小时前
[AI React Web] 包与依赖管理 | `axios`库 | `framer-motion`库
前端·人工智能·react.js
小阿鑫1 小时前
不要太信任Cursor,这位网友被删库了。。。
人工智能·aigc·cursor·部署mcp
说私域2 小时前
基于定制开发开源 AI 智能名片 S2B2C 商城小程序的热点与人工下发策略研究
人工智能·小程序
rannn_1112 小时前
【MySQL学习|黑马笔记|Day7】触发器和锁(全局锁、表级锁、行级锁、)
笔记·后端·学习·mysql
GoGeekBaird3 小时前
GoHumanLoopHub开源上线,开启Agent人际协作新方式
人工智能·后端·github