11 个例子讲清spark提交命令参数

目录

提交命名参数详情

Spark提交命令的主要参数如下。这些参数用于配置Spark应用程序的运行环境和资源分配。以下是一些常用参数的详细说明:

  1. --master: 指定Spark集群的主节点URL

    例如: --master spark://host:7077

  2. --deploy-mode: 部署模式,可以是client或cluster

    例如: --deploy-mode cluster

  3. --class: 主类的全限定名称

    例如: --class org.example.MySparkApp

  4. --name: 应用程序名称

    例如: --name "My Spark Application"

  5. --jars: 包含应用程序依赖的JAR文件

    例如: --jars dep1.jar,dep2.jar

  6. --files: 需要放置在每个执行器的工作目录中的文件

    例如: --files config.properties

  7. --conf: Spark配置属性

    例如: --conf spark.executor.memory=4g

  8. --driver-memory: 驱动程序使用的内存量

    例如: --driver-memory 4g

  9. --executor-memory: 每个执行器使用的内存量

    例如: --executor-memory 4g

  10. --num-executors: 启动的执行器数量

    例如: --num-executors 5

  11. --executor-cores: 每个执行器使用的核心数

    例如: --executor-cores 4

为什么有这么多参数

Spark提交命令有如此多的参数主要是为了满足不同场景下的需求,并提供足够的灵活性来优化应用程序的性能。解释一下为什么需要这么多参数:

  1. 适应不同的部署环境

    Spark可以在多种环境中运行,如单机、集群、云等。不同的参数允许用户针对特定环境进行配置。

  2. 资源管理和优化

    参数如--executor-memory--num-executors允许用户根据可用资源和任务需求精细调整资源分配。

  3. 应用程序配置

    参数如--class--jars允许用户指定应用程序的入口点和依赖,使Spark能够正确加载和运行用户的代码。

  4. 性能调优

    许多参数(如--conf)允许用户调整Spark的内部设置,以优化特定工作负载的性能。

  5. 安全性和访问控制

    某些参数用于配置安全设置,如身份验证和加密。

  6. 日志和监控

    参数可以用来配置日志级别和监控设置,有助于调试和性能分析。

  7. 兼容性和版本控制

    一些参数允许用户指定兼容性设置或使用特定版本的组件。

  8. 灵活性和可扩展性

    丰富的参数集使Spark能够适应各种复杂的数据处理场景和工作流程。

虽然参数众多可能看起来复杂,但这实际上是Spark强大和灵活的体现。在实际使用中,您通常不需要设置所有参数。大多数情况下,您可以从一些基本参数开始,然后根据需要逐步调整和优化。

如何开始学习

  1. 常用参数集

在日常使用中,有一些参数是最常用的,掌握这些可以满足大部分基本需求:

  • --master: 指定集群管理器
  • --deploy-mode: 选择部署模式
  • --class: 指定主类
  • --executor-memory: 设置执行器内存
  • --num-executors: 设置执行器数量
  • --executor-cores: 设置每个执行器的核心数
  1. 使用配置文件

为了简化命令行,您可以将常用参数放在配置文件中,例如spark-defaults.conf。这样可以避免每次都要输入长命令。

  1. 创建脚本或别名

您可以创建shell脚本或别名,封装常用的Spark提交命令和参数,以便快速启动应用程序。

  1. 使用环境变量

某些参数可以通过设置环境变量来指定,这样可以避免在命令行中重复输入。

  1. 利用Spark UI

Spark提供了Web UI,可以帮助您监控应用程序并了解资源使用情况,这有助于您优化参数设置。

  1. 渐进式优化

从基本配置开始,然后根据应用程序的性能和资源使用情况逐步调整参数。

  1. 了解默认值

熟悉Spark的默认参数值,这样您就知道在哪些情况下需要进行自定义设置。

  1. 使用高级资源管理器

如果您在大型集群上运行Spark,考虑使用像Kubernetes或Yarn这样的资源管理器,它们可以帮助自动化一些资源分配过程。

  1. 参数模板

为不同类型的作业(如ETL、机器学习等)创建参数模板,可以快速启动特定类型的任务。

  1. 持续学习

Spark生态系统在不断发展,定期查看文档和最佳实践可以帮助您更有效地使用和配置Spark。

记住,虽然参数很多,但您不需要一次掌握所有的参数。随着您使用Spark的经验增加,您会逐渐熟悉更多的参数和它们的用途。

一些具体的例子

1. 基本的Spark应用提交

这是一个简单的Spark应用提交命令:

bash 复制代码
spark-submit \
  --class org.example.MySparkApp \
  --master spark://master:7077 \
  --deploy-mode cluster \
  --executor-memory 4G \
  --num-executors 5 \
  myapp.jar

这个命令在集群模式下提交一个Spark应用,分配5个执行器,每个有4GB内存。

2. 提交带有依赖的Python脚本

如果您正在使用PySpark并需要额外的Python包:

bash 复制代码
spark-submit \
  --master yarn \
  --deploy-mode client \
  --executor-memory 2G \
  --executor-cores 2 \
  --num-executors 3 \
  --py-files dependencies.zip \
  --conf spark.yarn.appMasterEnv.PYSPARK_PYTHON=./environment/bin/python \
  my_pyspark_script.py

这个命令在YARN上以客户端模式运行PySpark脚本,包含了额外的Python依赖。

3. 运行Spark SQL作业

对于Spark SQL作业,您可能需要更多的驱动器内存:

bash 复制代码
spark-submit \
  --class org.apache.spark.sql.hive.thriftserver.HiveThriftServer2 \
  --master yarn \
  --deploy-mode client \
  --driver-memory 8G \
  --executor-memory 4G \
  --num-executors 10 \
  --conf spark.sql.hive.thriftServer.singleSession=true \
  spark-internal

这个命令启动一个Hive ThriftServer,为Spark SQL提供服务。

4. 提交Spark Streaming作业

对于流处理作业,您可能需要配置检查点和恢复选项:

bash 复制代码
spark-submit \
  --class com.example.StreamingJob \
  --master yarn \
  --deploy-mode cluster \
  --driver-memory 4G \
  --executor-memory 2G \
  --executor-cores 2 \
  --num-executors 5 \
  --conf spark.streaming.backpressure.enabled=true \
  --conf spark.streaming.kafka.maxRatePerPartition=100 \
  --conf spark.streaming.receiver.writeAheadLog.enable=true \
  streaming-job.jar

这个命令配置了一个Spark Streaming作业,启用了背压和预写日志。

5. 使用外部包运行Spark作业

如果您的作业依赖于外部库,例如连接到数据库:

bash 复制代码
spark-submit \
  --class com.example.DataProcessingJob \
  --master spark://master:7077 \
  --deploy-mode client \
  --driver-memory 4G \
  --executor-memory 2G \
  --num-executors 3 \
  --packages org.postgresql:postgresql:42.2.18 \
  --conf spark.executor.extraJavaOptions=-Dcom.amazonaws.services.s3.enableV4=true \
  data-processing-job.jar

这个命令包含了PostgreSQL JDBC驱动,并设置了一个Java系统属性。

一些更复杂的例子和使用技巧:

6. 动态资源分配

Spark支持动态资源分配,这对于长时间运行的作业特别有用:

bash 复制代码
spark-submit \
  --class com.example.LongRunningJob \
  --master yarn \
  --deploy-mode cluster \
  --executor-memory 4G \
  --conf spark.dynamicAllocation.enabled=true \
  --conf spark.shuffle.service.enabled=true \
  --conf spark.dynamicAllocation.initialExecutors=5 \
  --conf spark.dynamicAllocation.minExecutors=2 \
  --conf spark.dynamicAllocation.maxExecutors=20 \
  long-running-job.jar

这个配置允许Spark根据工作负载动态增加或减少执行器的数量。

7. 使用多个配置文件

您可以使用多个配置文件来管理不同环境的设置:

bash 复制代码
spark-submit \
  --properties-file prod-spark-defaults.conf \
  --files app-config.properties \
  --class com.example.ConfigurableJob \
  --master yarn \
  configurable-job.jar

这里,prod-spark-defaults.conf包含Spark的配置,而app-config.properties包含应用程序特定的配置。

8. GPU 支持

如果您的集群有GPU,您可以这样配置Spark以使用GPU:

bash 复制代码
spark-submit \
  --master yarn \
  --deploy-mode cluster \
  --num-executors 4 \
  --executor-memory 20G \
  --executor-cores 5 \
  --conf spark.task.resource.gpu.amount=1 \
  --conf spark.executor.resource.gpu.amount=1 \
  --conf spark.executor.resource.gpu.discoveryScript=/usr/lib/spark/gpu_discovery.sh \
  gpu-job.py

这个配置告诉Spark每个执行器使用一个GPU。

9. 自定义日志配置

您可以自定义Spark的日志配置:

bash 复制代码
spark-submit \
  --class com.example.LoggingJob \
  --master yarn \
  --deploy-mode cluster \
  --files log4j.properties \
  --conf spark.executor.extraJavaOptions="-Dlog4j.configuration=file:log4j.properties" \
  --conf spark.driver.extraJavaOptions="-Dlog4j.configuration=file:log4j.properties" \
  logging-job.jar

这个配置使用自定义的log4j.properties文件来控制日志输出。

10. 使用Kubernetes作为集群管理器

如果您使用Kubernetes来管理Spark集群:

bash 复制代码
spark-submit \
  --master k8s://https://k8s-apiserver-host:443 \
  --deploy-mode cluster \
  --name spark-pi \
  --class org.apache.spark.examples.SparkPi \
  --conf spark.executor.instances=5 \
  --conf spark.kubernetes.container.image=spark:v3.1.1 \
  --conf spark.kubernetes.authenticate.driver.serviceAccountName=spark \
  local:///path/to/examples.jar

这个命令在Kubernetes集群上提交Spark作业。

11 使用外部shuffle服务

对于大规模洗牌操作,使用外部洗牌服务可以提高性能:

bash 复制代码
spark-submit \
  --class com.example.ShuffleIntensiveJob \
  --master yarn \
  --deploy-mode cluster \
  --conf spark.shuffle.service.enabled=true \
  --conf spark.dynamicAllocation.enabled=true \
  --conf spark.shuffle.service.port=7337 \
  shuffle-intensive-job.jar

这个配置启用了外部洗牌服务,这可以提高大规模数据洗牌的效率。

这些高级示例展示了Spark提交命令的强大功能和灵活性。通过这些配置,您可以精细地控制Spark作业的执行方式,优化资源使用,并适应各种复杂的计算环境。

如何根据集群配置调整参数

根据集群配置调整Spark参数是优化性能的关键。这个过程需要考虑多个因素,并且通常需要一些实验和调优。以下是一些指导原则和步骤,根据集群配置调整Spark参数:

  1. 了解集群资源

首先,您需要清楚地了解您的集群资源:

  • 节点数量
  • 每个节点的CPU核心数
  • 每个节点的内存大小
  • 网络带宽
  • 存储类型和容量(HDD、SSD、NVMe等)
  1. 设置执行器数量(--num-executors)

通常,你会希望每个节点运行少量执行器,以充分利用资源:

--num-executors = (节点数 * 每节点核心数) / 每执行器核心数 - 1

减1是为了给ApplicationMaster预留资源。

  1. 设置执行器内存(--executor-memory)

考虑到系统和Hadoop守护进程的开销,通常将每个节点75-80%的内存分配给Spark:

--executor-memory = (节点内存 * 0.75) / 每节点执行器数
  1. 设置执行器核心数(--executor-cores)

一般建议每个执行器使用5个核心左右:

--executor-cores 5
  1. 调整驱动程序内存(--driver-memory)

对于驱动程序密集型作业,可能需要增加驱动程序内存:

--driver-memory 4g
  1. 配置分区数

分区数通常设置为执行器核心总数的2-3倍:

--conf spark.default.parallelism=(--num-executors * --executor-cores) * 2
  1. 调整 shuffle 分区

对于大数据集,可能需要增加 shuffle 分区数:

--conf spark.sql.shuffle.partitions=1000
  1. 启用动态资源分配

对于工作负载变化的场景,启用动态资源分配可以提高资源利用率:

--conf spark.dynamicAllocation.enabled=true
--conf spark.shuffle.service.enabled=true
  1. 根据存储类型优化

如果使用SSD,可以增加 spark.shuffle.file.buffer

--conf spark.shuffle.file.buffer=64k
  1. 网络配置

对于网络密集型任务,可以调整以下参数:

--conf spark.reducer.maxSizeInFlight=96m
--conf spark.shuffle.io.maxRetries=10
--conf spark.shuffle.io.retryWait=60s
  1. 序列化

使用Kryo序列化可以提高性能:

--conf spark.serializer=org.apache.spark.serializer.KryoSerializer

示例配置:

假设我们有一个10节点的集群,每个节点有16核和64GB内存:

bash 复制代码
spark-submit \
  --class com.example.BigDataJob \
  --master yarn \
  --deploy-mode cluster \
  --num-executors 30 \
  --executor-cores 5 \
  --executor-memory 17g \
  --driver-memory 4g \
  --conf spark.default.parallelism=300 \
  --conf spark.sql.shuffle.partitions=1000 \
  --conf spark.dynamicAllocation.enabled=true \
  --conf spark.shuffle.service.enabled=true \
  --conf spark.serializer=org.apache.spark.serializer.KryoSerializer \
  big-data-job.jar

这只是一个起点。您需要根据实际工作负载和数据特征进行进一步的调整和测试。使用Spark UI和日志来监控性能,并根据观察结果逐步优化参数。

总结

Apache Spark提供了大量参数来优化其性能和资源使用。本文概述了Spark参数配置的关键方面。

参数多样性的原因

  1. 适应不同部署环境(单机、集群、云)
  2. 精细化资源管理和性能优化
  3. 应用程序配置灵活性
  4. 安全性和访问控制
  5. 日志和监控定制

常用参数

  • --master: 指定集群管理器
  • --deploy-mode: 选择部署模式
  • --class: 指定主类
  • --executor-memory: 设置执行器内存
  • --num-executors: 设置执行器数量
  • --executor-cores: 设置每个执行器的核心数

高级配置示例

  1. 动态资源分配
  2. 多配置文件使用
  3. GPU支持
  4. 自定义日志配置
  5. Kubernetes集成
  6. 外部洗牌服务

根据集群配置调整参数

  1. 了解集群资源(节点数、CPU、内存、网络、存储)
  2. 计算合适的执行器数量和内存
  3. 优化分区数和shuffle操作
  4. 启用动态资源分配
  5. 根据存储类型和网络特性进行优化
  6. 考虑序列化方式

最佳实践

  • 从基本配置开始,逐步优化
  • 利用Spark UI监控性能
  • 创建常用配置的脚本或别名
  • 定期查看文档和最新最佳实践

调整Spark参数是一个迭代过程,需要根据具体工作负载和集群特性不断优化。

相关推荐
lucky_syq35 分钟前
Saprk和Flink的区别
大数据·flink
lucky_syq37 分钟前
流式处理,为什么Flink比Spark Streaming好?
大数据·flink·spark
袋鼠云数栈37 分钟前
深入浅出Flink CEP丨如何通过Flink SQL作业动态更新Flink CEP作业
大数据
小白学大数据2 小时前
如何使用Selenium处理JavaScript动态加载的内容?
大数据·javascript·爬虫·selenium·测试工具
15年网络推广青哥2 小时前
国际抖音TikTok矩阵运营的关键要素有哪些?
大数据·人工智能·矩阵
节点。csn3 小时前
Hadoop yarn安装
大数据·hadoop·分布式
csding113 小时前
写入hive metastore报问题Permission denied: user=hadoop,inode=“/user/hive”
数据仓库·hive·hadoop
arnold663 小时前
探索 ElasticSearch:性能优化之道
大数据·elasticsearch·性能优化
NiNg_1_2344 小时前
基于Hadoop的数据清洗
大数据·hadoop·分布式
成长的小牛2335 小时前
es使用knn向量检索中numCandidates和k应该如何配比更合适
大数据·elasticsearch·搜索引擎